389 research outputs found
Fermentation and Cell Wall Degradation in Guineagrass and Italian Ryegrass Silages
Guineagrass (Panicum maximum Jacq.) was ensiled at the room temperature and Italian ryegrass (Lolium multiflorum L.) was ensiled at the room temperature and at 30 under the laboratory conditions. As a result, the acetic acid silage was made from Guineagrass and the lactic acid silages were made from Italian ryegrass. The loss of cell wall components during ensiling was the most in hemicellulose followed by NDF, but those of cellulose and AD-lignin were slight. In the hemicellulosic monosaccharides, the loss of hexose (galactose and glucose) was relatively high and that of pentose (arabinose and xylose) was relatively low in the three types of silage. The temperature had little effect on the losses from Italian ryegrass, and the loss of hemicellulose was higher in Guineagrass silage than in Italian ryegrass silages
Estimation of Dry Matter and Lignin Distributions in Maize Internodes by Micro-Surgical Tissue Separation
The second, 5th and 8th internodes, counting from the lowest internode, taken from the heading, milk-ripe and full-ripe maize (Zea mays L), were dissected into fractions of epidermis (EPI), sclerenchyma (SCL), vascular bundle (VB) and pith parenchyma (PITH). The proportion of dry weight of VB to the total dry weight were smallest (8-13%), followed by EPI (15-22%) and SCL (15-30%) and PITH (43-58%). These values differed entirely from the proportions of area for the fractions on the cross-cut section. The lignin concentration, in the most case, was in the order of; EPI \u3e SCL \u3e VB \u3e PITH. From the bottom toward the top of stem, overall, lignin concentration increased in PITH but it decreased in EPI and SCL, and in VB was relatively consistent. The proportion of lignin content in VB to the total lignin content was smallest (9-14%), and varied from 24 to 35% for EPI, from 18 to 48% for SCL and from 12 to 44% for PITH. The higher the internode the smaller the proportion of lignin content in SCL, consequently, the greater in PITH
Theory of superconductivity of carbon nanotubes and graphene
We present a new mechanism of carbon nanotube superconductivity that
originates from edge states which are specific to graphene. Using on-site and
boundary deformation potentials which do not cause bulk superconductivity, we
obtain an appreciable transition temperature for the edge state. As a
consequence, a metallic zigzag carbon nanotube having open boundaries can be
regarded as a natural superconductor/normal metal/superconductor junction
system, in which superconducting states are developed locally at both ends of
the nanotube and a normal metal exists in the middle. In this case, a signal of
the edge state superconductivity appears as the Josephson current which is
sensitive to the length of a nanotube and the position of the Fermi energy.
Such a dependence distinguishs edge state superconductivity from bulk
superconductivity.Comment: 5 pages, 2 figure
Experimentally Engineering the Edge Termination of Graphene Nanoribbons
The edges of graphene nanoribbons (GNRs) have attracted much interest due to
their potentially strong influence on GNR electronic and magnetic properties.
Here we report the ability to engineer the microscopic edge termination of high
quality GNRs via hydrogen plasma etching. Using a combination of
high-resolution scanning tunneling microscopy and first-principles
calculations, we have determined the exact atomic structure of plasma-etched
GNR edges and established the chemical nature of terminating functional groups
for zigzag, armchair and chiral edge orientations. We find that the edges of
hydrogen-plasma-etched GNRs are generally flat, free of structural
reconstructions and are terminated by hydrogen atoms with no rehybridization of
the outermost carbon edge atoms. Both zigzag and chiral edges show the presence
of edge states.Comment: 16+9 pages, 3+4 figure
Clar's Theory, STM Images, and Geometry of Graphene Nanoribbons
We show that Clar's theory of the aromatic sextet is a simple and powerful
tool to predict the stability, the \pi-electron distribution, the geometry, the
electronic/magnetic structure of graphene nanoribbons with different hydrogen
edge terminations. We use density functional theory to obtain the equilibrium
atomic positions, simulated scanning tunneling microscopy (STM) images, edge
energies, band gaps, and edge-induced strains of graphene ribbons that we
analyze in terms of Clar formulas. Based on their Clar representation, we
propose a classification scheme for graphene ribbons that groups configurations
with similar bond length alternations, STM patterns, and Raman spectra. Our
simulations show how STM images and Raman spectra can be used to identify the
type of edge termination
Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells
Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells
<p>Abstract</p> <p>Background</p> <p>Interactions between the immune response and brain functions such as olfactory, auditory, and visual sensations are likely. This study investigated the effect of sounds on alloimmune responses in a murine model of cardiac allograft transplantation.</p> <p>Methods</p> <p>Naïve CBA mice (H2<sup>k</sup>) underwent transplantation of a C57BL/6 (B6, H2<sup>b</sup>) heart and were exposed to one of three types of music--opera (<it>La Traviata</it>), classical (Mozart), and New Age (Enya)--or one of six different single sound frequencies, for 7 days. Additionally, we prepared two groups of CBA recipients with tympanic membrane perforation exposed to opera for 7 days and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment). An adoptive transfer study was performed to determine whether regulatory cells were generated in allograft recipients. Immunohistochemical, cell-proliferation, cytokine, and flow cytometry assessments were also performed.</p> <p>Results</p> <p>CBA recipients of a B6 cardiac graft that were exposed to opera music and Mozart had significantly prolonged allograft survival (median survival times [MSTs], 26.5 and 20 days, respectively), whereas those exposed to a single sound frequency (100, 500, 1000, 5000, 10,000, or 20,000 Hz) or Enya did not (MSTs, 7.5, 8, 9, 8, 7.5, 8.5 and 11 days, respectively). Untreated, CBA mice with tympanic membrane perforations and CBA recipients exposed to opera for 7 days before transplantation (pre-treatment) rejected B6 cardiac grafts acutely (MSTs, 7, 8 and 8 days, respectively). Adoptive transfer of whole splenocytes, CD4<sup>+ </sup>cells, or CD4<sup>+</sup>CD25<sup>+ </sup>cells from opera-exposed primary allograft recipients resulted in significantly prolonged allograft survival in naive secondary recipients (MSTs, 36, 68, and > 100 days, respectively). Proliferation of splenocytes, interleukin (IL)-2 and interferon (IFN)-γ production was suppressed in opera-exposed mice, and production of IL-4 and IL-10 from opera-exposed transplant recipients increased compared to that from splenocytes of untreated recipients. Flow cytometry studies showed an increased CD4<sup>+</sup>CD25<sup>+ </sup>Forkhead box P3 (Foxp3)<sup>+ </sup>cell population in splenocytes from those mice.</p> <p>Conclusion</p> <p>Our findings indicate that exposure to opera music, such as La traviata, could affect such aspects of the peripheral immune response as generation of regulatory CD4<sup>+</sup>CD25<sup>+ </sup>cells and up-regulation of anti-inflammatory cytokines, resulting in prolonged allograft survival.</p
The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence
Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD
Caffeine Abolishes the Ultraviolet-Induced REV3 Translesion Replication Pathway in Mouse Cells
When a replicative DNA polymerase stalls upon encountering a photoproduct on the template strand, it is relieved by other low-processivity polymerase(s), which insert nucleotide(s) opposite the lesion. Using an alkaline sucrose density gradient sedimentation technique, we previously classified this process termed UV-induced translesion replication (UV-TLS) into two types. In human cancer cells or xeroderma pigmentosum variant (XP-V) cells, UV-TLS was inhibited by caffeine or proteasome inhibitors. However, in normal human cells, the process was insensitive to these reagents. Reportedly, in yeast or mammalian cells, REV3 protein (a catalytic subunit of DNA polymerase ζ) is predominantly involved in the former type of TLS. Here, we studied UV-TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF). In the wild-type MEF, UV-TLS was slow (similar to that of human cancer cells or XP-V cells), and was abolished by caffeine or MG-262. In 2 cell lines of Rev3KO-MEF (Rev3−/− p53−/−), UV-TLS was not observed. In p53KO-MEF, which is a strict control for Rev3KO-MEF, the UV-TLS response was similar to that of the wild-type. Introduction of the Rev3 expression plasmid into Rev3KO-MEF restored the UV-TLS response in selected stable transformants. In some transformants, viability to UV was the same as that in the wild-type, and the death rate was increased by caffeine. Our findings indicate that REV3 is predominantly involved in UV-TLS in mouse cells, and that the REV3 translesion pathway is suppressed by caffeine or proteasome inhibitors
- …