5 research outputs found

    SARS-CoV-2 Breakthrough Infections: Incidence and Risk Factors in a Large European Multicentric Cohort of Health Workers.

    Get PDF
    Background: The research aimed to investigate the incidence of SARS-CoV-2 breakthrough infections and their determinants in a large European cohort of more than 60,000 health workers. Methods: A multicentric retrospective cohort study, involving 12 European centers, was carried out within the ORCHESTRA project, collecting data up to 18 November 2021 on fully vaccinated health workers. The cumulative incidence of SARS-CoV-2 breakthrough infections was investigated with its association with occupational and social-demographic characteristics (age, sex, job title, previous SARS-CoV-2 infection, antibody titer levels, and time from the vaccination course completion). Results: Among 64,172 health workers from 12 European health centers, 797 breakthrough infections were observed (cumulative incidence of 1.2%). The primary analysis using individual data on 8 out of 12 centers showed that age and previous infection significantly modified breakthrough infection rates. In the meta-analysis of aggregated data from all centers, previous SARS-CoV-2 infection and the standardized antibody titer were inversely related to the risk of breakthrough infection (p = 0.008 and p = 0.007, respectively). Conclusion: The inverse correlation of antibody titer with the risk of breakthrough infection supports the evidence that vaccination plays a primary role in infection prevention, especially in health workers. Cellular immunity, previous clinical conditions, and vaccination timing should be further investigated

    Ripple polystyrene nano-pattern induced by KrF laser

    No full text
    The study of excimer laser treatment of polystyrene surface was performed. The influence of laser fluence and number of laser pulses on surface chemistry and morphology was determined. The surface morphology and roughness were studied with atomic force microscopy. Surface wettability and aging studies were characterized by the water contact angle measurements. Surface oxygen concentration and chemistry were evaluated from X-ray photoelectron spectroscopy and zeta potential measurements. The optimal polystyrene treatment parameters for the most regular pattern were determined. The foils with optimal ripple pattern were subsequently sputtered with gold nano-layers of 100 nm thickness. It was found that the surface roughness of PS strongly depends on number of pulses. The aging study revealed that the higher contact angle achieve the samples treated with higher laser fluence. The deposition of gold nano-layer increases the surface roughness of nano-patterned surface. It was proved that the oxygen concentration is significantly influenced by the KrF laser exposure

    Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

    No full text
    Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells)
    corecore