64,691 research outputs found

    Anisotropic Compacts Stars on Paraboloidal Spacetime with Linear Equation of State

    Full text link
    New exact solutions of Einstein's field equations (EFEs) by assuming linear equation of state, pr=α(ρρR) p_r = \alpha (\rho - \rho_R) where pr p_r is the radial pressure and ρR \rho_R is the surface density, are obtained on the background of a paraboloidal spacetime. By assuming estimated mass and radius of strange star candidate 4U 1820-30, various physical and energy conditions are used for estimating the range of parameter α \alpha . The suitability of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX J1804.3658 has been explored and respective ranges of α \alpha , for which all physical and energy conditions are satisfied throughout the distribution, are obtained.Comment: 10 pages, 12 figures, 1 tabl

    Surface Plasmon Driven Electric and Magnetic Resonators for Metamaterials

    Full text link
    Using interplay between surface plasmons and metamaterials, we propose a new technique for novel metamaterial designs. We show that surface plasmons existing on thin metal surfaces can be used to "drive" non-resonant structures in their vicinity to provide new types of electric and magnetic resonators. These resonators strictly adhere to surface plasmon dispersion of the host metal film. The operating frequency of the resultant metamaterials can be scaled to extremely high frequencies, otherwise not possible with conventional split-ring-resonator-based designs. Our approach opens new possibilities for theory and experiment in the interface of plasmonics and metamaterials to harvest many potential applications of both fields combined.Comment: Less than 5 Journal Pages, 5 Figure

    Wear and Friction Modeling on Lifeboat Launch Systems

    Get PDF
    The RNLI provides search and rescue cover along the UK and RoI coast using a variety of lifeboats and launch techniques. In locations where there is no natural harbour it is necessary to use a slipway to launch the lifeboat into the sea. Lifeboat slipway stations consist of an initial section where the boat is held on rollers followed by an inclined keelway lined with low friction composite materials, the lifeboat is released from the top of the slipway and proceeds under its own weight into the water. The lifeboat is later recovered using a winch line. It is common to manually apply grease to the composite slipway lining before each launch and recovery in order to ensure sufficiently low friction for successful operation. With the introduction of the Tamar class lifeboat it is necessary to upgrade existing boathouses and standardise slipway operational procedures to ensure consistent operation. The higher contact pressures associated with the new lifeboat have led to issues of high friction and wear on the composite slipway linings and the manual application of grease to reduce friction is to be restricted due to environmental impact and cost factors. This paper presents a multidisciplinary approach to modelling slipway panel wear and friction using tribometer testing in conjunction with finite element analysis and slipway condition surveys to incorporate common real-world effects such as panel misalignments. Finally, it is shown that a freshwater lubrication system is effective, reducing cost and environmental impacts while maintaining good friction and wear performance

    A review of fracture mechanics life technology

    Get PDF
    Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods
    corecore