3,234 research outputs found

    Ground state properties of heavy alkali halides

    Full text link
    We extend previous work on alkali halides by calculations for the heavy-atom species RbF, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI, and RbI. Relativistic effects are included by means of energy-consistent pseudopotentials, correlations are treated at the coupled-cluster level. A striking deficiency of the Hartree-Fock approach are lattice constants deviating by up to 7.5 % from experimental values which is reduced to a maximum error of 2.4 % by taking into account electron correlation. Besides, we provide ab-initio data for in-crystal polarizabilities and van der Waals coefficients.Comment: accepted by Phys. Rev.

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Correlation effects in MgO and CaO: Cohesive energies and lattice constants

    Full text link
    A recently proposed computational scheme based on local increments has been applied to the calculation of correlation contributions to the cohesive energy of the CaO crystal. Using ab-initio quantum chemical methods for evaluating individual increments, we obtain 80% of the difference between the experimental and Hartree-Fock cohesive energies. Lattice constants corrected for correlation effects deviate by less than 1% from experimental values, in the case of MgO and CaO.Comment: LaTeX, 4 figure

    Ground-state properties of rutile: electron-correlation effects

    Full text link
    Electron-correlation effects on cohesive energy, lattice constant and bulk compressibility of rutile are calculated using an ab-initio scheme. A competition between the two groups of partially covalent Ti-O bonds is the reason that the correlation energy does not change linearly with deviations from the equilibrium geometry, but is dominated by quadratic terms instead. As a consequence, the Hartree-Fock lattice constants are close to the experimental ones, while the compressibility is strongly renormalized by electronic correlations.Comment: 1 figure to appear in Phys. Rev.

    Can one or two high doses of oral vitamin D3 correct insufficiency in a non-supplemented rheumatologic population?

    Get PDF
    Summary: We evaluated the effectiveness of supplementation with high dose of oral vitamin D3 to correct vitamin D insufficiency. We have shown that one or two oral bolus of 300,000IU of vitamin D3 can correct vitamin D insufficiency in 50% of patients and that the patients who benefited more from supplementation were those with the lowest baseline levels. Introduction: Adherence with daily oral supplements of vitamin D3 is suboptimal. We evaluated the effectiveness of a single high dose of oral vitamin D3 (300,000IU) to correct vitamin D insufficiency in a rheumatologic population. Methods: Over 1month, 292 patients had levels of 25-OH vitamin D determined. Results were classified as: deficiency 20ng/ml. The lowest the baseline value, the highest the change after 3months (negative relation with a correlation coefficient r = −0.3, p = 0.0007). Conclusions: We have shown that one or two oral bolus of 300,000IU of vitamin D3 can correct vitamin D insufficiency in 50% of patient

    Directional vortex motion guided by artificially induced mesoscopic potentials

    Get PDF
    Rectangular pinning arrays of Ni dots define a potential landscape for vortex motion in Nb films. Magnetotransport experiments in which two in-plane orthogonal electrical currents are injected simultaneously allow selecting the direction and magnitude of the Lorentz force on the vortex-lattice, thus providing the angular dependence of the vortex motion. The background dissipation depends on angle at low magnetic fields, which is progressively smeared out with increasing field. The periodic potential locks in the vortex motion along channeling directions. Because of this, vortex-lattice direction of motion is up to 85o away from the applied Lorentz force direction.Comment: PDF file includes figure

    Influence of electron correlations on ground-state properties of III-V semiconductors

    Full text link
    Lattice constants and bulk moduli of eleven cubic III-V semiconductors are calculated using an ab initio scheme. Correlation contributions of the valence electrons, in particular, are determined using increments for localized bonds and for pairs and triples of such bonds; individual increments, in turn, are evaluated using the coupled cluster approach with single and double excitations. Core-valence correlation is taken into account by means of a core polarization potential. Combining the results at the correlated level with corresponding Hartree-Fock data, we obtain lattice constants which agree with experiment within an average error of -0.2%; bulk moduli are accurate to +4%. We discuss in detail the influence of the various correlation contributions on lattice constants and bulk moduli.Comment: 4 pages, Latex, no figures, Phys. Rev. B, accepte

    Steps in the Negative-Differential-Conductivity Regime of a Superconductor

    Full text link
    Current-voltage characteristics were measured in the mixed state of Y1Ba2Cu3O(7-delta) superconducting films in the regime where flux flow becomes unstable and the differential conductivity dj/dE becomes negative. Under conditions where its negative slope is steep, the j(E) curve develops a pronounced staircase like pattern. We attribute the steps in j(E) to the formation of a dynamical phase consisting of the succesive nucleation of quantized distortions in the local vortex velocity and flux distribution within the moving flux matter.Comment: 5 pages, 3 figure
    corecore