6,474 research outputs found

    Experimental and Numerical Studies on a Centrifugal Pump with 2D-Curved Blades in Cavitating Condition

    Get PDF
    In the presented study a special test-pump with 2D curvature blade geometry in cavitating and non-cavitating conditions was investigated using different experimental techniques and a 3D numerical model of cavitating flows. Experimental and numerical results concerning pump characteristics and performance breakdown were compared at different flow conditions. Appearing types of cavitation and the spatial distribution of vapour structures within the runner were also analysed

    Green's functions for parabolic systems of second order in time-varying domains

    Full text link
    We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and 1/2-H\"older continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior H\"older continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local H\"older continuity estimate. In particular, our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur

    Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites

    Get PDF
    Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass

    A Framework to Utilise Urban Bus Data for Advanced Data Analysis

    Get PDF
    Most urban bus operators collect detailed data on their respective transportation networks using electronic fare collection systems. However, contrary to the opinion of other service industries that this data is a valuable resource, many bus operators have tended not to fully utilise these resources. International experience suggests using innovative technologies and methodologies such as data warehousing, Online Analytical Processing (OLAP), and data mining, to derive the maximum benefit from this data. Still bus operators tend not to keep the full range of data in a form, which is easy to access or utilise, and therefore, are not able to apply these technologies. The aim of the research project on which this paper reports is to describe the initial data structure of an electronic fare collection system (installed by a public transport operator in Ireland), the storage and enrichment of that data in a relational database, and finally, the representation of the public transport data in a data warehouse. This data warehouse forms the basis of all future data analysis. A 4-phase framework describes the import process leading to a relational database storing the transactional data. The paper concludes with the development of a data warehouse using the star schema

    Multiscale approach to the electronic structure of doped semiconductor surfaces

    No full text
    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising “pseudoatoms” possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic “clean-cleaved” Si(111) surface and its semiconducting (2×1) reconstructions
    • …
    corecore