6,763 research outputs found

    The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    Get PDF
    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations

    SIMULATING BST INTRODUCTION IN CALIFORNIA FOR DAIRY POLICY ANALYSIS

    Get PDF
    An econometric model is estimated to simulate the impact of introducing bovine somatotropin (BST) on the California dairy industry. Forecasts of 1991-94 milk production and prices without BST are compared to those with BST under the 1990 Farm Bill. The effects are evaluated under a range in assumptions, given the uncertainty about BST's commercial benefits and costs. Results indicate the aggregate returns of BST introduction for California are positive, but small, assuming no adverse consumer reaction.Agricultural and Food Policy, Research and Development/Tech Change/Emerging Technologies,

    Bosonic molecules in rotating traps

    Full text link
    We present a variational many-body wave function for repelling bosons in rotating traps, focusing on rotational frequencies that do not lead to restriction to the lowest Landau level. This wave function incorporates correlations beyond the Gross-Pitaevskii (GP) mean field approximation, and it describes rotating boson molecules (RBMs) made of localized bosons that form polygonal-ring-like crystalline patterns in their intrinsic frame of reference. The RBMs exhibit characteristic periodic dependencies of the ground-state angular momenta on the number of bosons in the polygonal rings. For small numbers of neutral bosons, the RBM ground-state energies are found to be always lower than those of the corresponding GP solutions, in particular in the regime of GP vortex formation.Comment: To appear in Phys. Rev. Lett. LATEX, 5 pages with 5 figures. For related papers, see http://www.prism.gatech.edu/~ph274cy
    • …
    corecore