396 research outputs found

    Electrically tunable multi-terminal SQUID-on-tip

    Full text link
    We present a new nanoscale superconducting quantum interference device (SQUID) whose interference pattern can be shifted electrically in-situ. The device consists of a nanoscale four-terminal/four-junction SQUID fabricated at the apex of a sharp pipette using a self-aligned three-step deposition of Pb. In contrast to conventional two-terminal/two-junction SQUIDs that display optimal sensitivity when flux biased to about a quarter of the flux quantum, the additional terminals and junctions allow optimal sensitivity at arbitrary applied flux, thus eliminating the magnetic field "blind spots". We demonstrate spin sensitivity of 5 to 8 μB/Hz1/2\mu_B/\text{Hz}^{1/2} over a continuous field range of 0 to 0.5 T, with promising applications for nanoscale scanning magnetic imaging

    Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene

    Full text link
    The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQUID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems

    Emergence of super-Poissonian light from indistinguishable single-photon emitters

    Full text link
    The optical interference constitutes a paramount resource in modern physics. At the scale of individual atoms and photons, it is a diverse concept that causes different coherent phenomena. We present the experimental characterization of both coherent and statistical properties of light emitted from ensembles of trapped ions increasing with a number of contributing phase-incoherent independent atomic particles ranging from a single to up to several hundreds. It conclusively demonstrates how super-Poissonian quantum statistics non-trivially arises purely from the finite number of indistinguishable single-photon emitters in the limit of a single detection mode. The achieved new optical emission regime in which these independent atoms contribute coherently to the super-Poissonian statistics provides a new perspective on the emergence of optical coherence at the atomic scale and constitutes a unique toolbox for its generation and control at the most microscopic level

    The mathematical analysis for peristaltic flow of nano fluid in a curved channel with compliant walls

    Get PDF
    Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which undergo cascades of bifurcations as the current and magnetic field increase. Our numerical simulations predict metamorphosis of fast Abrikosov vortices into mixed Abrikosov-Josephson vortices at even higher velocities. This work offers an insight into the fundamental physics of dynamic vortex states of superconductors at high current densities, crucial for many applications

    Promoting Functional Health in Midlife and Old Age: Long-Term Protective Effects of Control Beliefs, Social Support, and Physical Exercise

    Get PDF
    Previous studies have examined physical risk factors in relation to functional health, but less work has focused on the protective role of psychological and social factors. We examined the individual and joint protective contribution of control beliefs, social support and physical exercise to changes in functional health, beyond the influence of health status and physical risk factors in middle-aged and older adults. Given that functional health typically declines throughout adulthood, it is important to identify modifiable factors that can be implemented to maintain functioning, improve quality of life, and reduce disability.We conducted a national longitudinal study, Midlife in the United States (MIDUS), with assessments in 1995-1996 and 2004-2006, and 3,626 community-residing adults, aged 32 to 84, were included in the analyses. Functional health (Physical Functioning subscale of the SF-36) and protective factors were measured at both occasions. While controlling for socio-demographic, health status, and physical risk factors (large waist circumference, smoking, and alcohol or drug problems), a composite of the three protective variables (control beliefs, social support, and physical exercise) at Time 1 was significantly related to functional health change. The more of these factors at Time 1, the better the health maintenance over 10 years. Among middle-aged and older adults, declines in health were significantly reduced with an increased number of protective factors.Age-related declines in health were reduced among those with more protective factors up to a decade earlier in life. Modifiable psychological, social, and physical protective factors, individually and in the aggregate, are associated with maintenance of functional health, beyond the damaging effects of physical risk factors. The results are encouraging for the prospect of developing interventions to promote functional health and for reducing public health expenditures for physical disability in later life

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed
    corecore