1,599 research outputs found

    Structural Peculiarities of A3B5 Nanocrystals Created in Si by Ion-Beam Synthesis

    Get PDF
    We reported the structure peculiarities of nanocrystals formed in Si by means of high-fluence implantation at 25 and 500 °С followed by rapid thermal annealing (RTA). The structure of implanted samples has been investigated by means of transmission electron microscopy (TEM). The crystalline nature of the precipitates is proved by the Moiré fringe patterns presence in the TEM images. The Moiré fringe distance (Moiré period) is equal of 1.8 nm for small precipitates. This experimental value coincides with the calculated one for crystalline InAs. It is noted a Moiré period increasing in the case of large precipitates. We suppose that this feature is a result of surplus As or In atoms embedded in precipitates. One can see an interesting effect – “glowng” of nanocrystal/Si interfaces at the dark-field images of implanted and annealed samples. We ascribe this effect to a presence of misfit dislocation networks at the InAs/Si interfaces generated as a result of strain relaxation in highly mismatched InAs/Si system. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3543

    Ion Beam Synthesis of InAs Nanocrystals in Crystalline Silicon

    Get PDF
    The formation of nanodimensional InAs crystallites on Si wafers was studied by the method of high fluence implantation of As and In ions with subsequent high temperature treatment. It was found that the size and depth distributions of the crystallites depend on both the implantation temperature and the annealing conditions. A broad band in an energy range of 0.75–1.1 eV was recorded in the photolumines cence spectra of the samples

    The application of modern computational fluid dynamics techniques for increasing the efficiency and stability of an axial compressor in an industrial gas turbine

    Full text link
    This paper contains on-site test data of an axial compressor as part of an industrial gas turbine, as well as the process of Computational Fluid Dynamics (CFD) modelling, verification, research and modernization. The research method has been verified with actual test data gathered from the real gas turbine unit (GTU) test. The computational studies showed significant potential for improving aerodynamic efficiency and the surge margin of a compressor by better matching of inlet and outer groups of stages. A special design approach was used to improve aerodynamic parameters of the inlet system and certain middle stages. Computations made for the improved compressor model showed a 3% efficiency gain and 5% stall margin gain with possibilities for further modernization. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Mechanisms of arsenic clustering in silicon

    Full text link
    A model of arsenic clustering in silicon is proposed and analyzed. The main feature of the proposed model is the assumption that negatively charged arsenic complexes play a dominant role in the clustering process. To confirm this assumption, electron density and concentration of impurity atoms incorporated into the clusters are calculated as functions of the total arsenic concentration. A number of the negatively charged clusters incorporating a point defect and one or more arsenic atoms are investigated. It is shown that for the doubly negatively charged clusters or for clusters incorporating more than one arsenic atom the electron density reaches a maximum value and then monotonically and slowly decreases as total arsenic concentration increases. In the case of doubly negatively charged cluster incorporating two arsenic atoms, the calculated electron density agrees well with the experimental data. Agreement with the experiment confirms the conclusion that two arsenic atoms participate in the cluster formation. Among all present models, the proposed model of clustering by formation of doubly negatively charged cluster incorporating two arsenic atoms gives the best fit to the experimental data and can be used in simulation of high concentration arsenic diffusion.Comment: 13 pages, 4 figures. Revised and shortened version of the paper has been published in Phys. Rev. B, Vol.74 (3), art. no. 035205 (2006

    Nanocrystal- and Dislocation-Related Luminescence in Si Matrix with InAs Nanocrystals

    Get PDF
    We have studied the influence of ion implantation and post-implantation annealing regimes on the structural and optical properties of silicon matrix with ion-beam synthesized InAs nanocrystals. (100) Si wafers were implanted at 25 and 500 ±C, subsequently with high fluences of As and In ions. After implantation the samples were processed by furnace and rapid thermal annealing at 900, 950 and 1050 ±C. A part of the samples implanted at 25 ±C was additionally exposed to H+2 ions (100 keV, 1.2 × 1016 cm−2 in terms of atomic hydrogen). This procedure was performed to obtain an internal getter. In order to characterize the implanted samples transmission electron microscopy and low-temperature photoluminescence techniques were employed. It was demonstrated that by introducing getter, varying the ion implantation temperature, ion fluences and post-implantation annealing duration, and temperature it is possible to form InAs nanocrystals in the range of sizes of 2–80 nm and create various concentration and distribution of di˙erent types of secondary defects. The last ones cause in turn the appearance in photoluminescence spectra dislocation-related D1, D2 and D4 lines at 0.807, 0.870 and 0.997 eV, respectively

    Identification of corner separation modelling in axial compressor stage

    Get PDF
    The paper presents a study of corner separations in hub to blade region at various operation conditions towards compressor stall. It is known that for compressor flows with low or none separations computation fluid dynamics with RANS methods work quite well, however, for highly separated flows they are no longer entirely valid. Therefore, several criteria were applied for prediction and quantification of possible corner separation, and the main interest of this work is in predicting the separation just before it will actually happen by certain flow metrics, so these metrics can be further used as a 'pre-stall' criteria whilst the RANS CFD operating point still behave within its appropriate limits. Also the effect of shear lean is discussed in the presented context. © The Authors, published by EDP Sciences, 2020

    A new method for calculation of crystal susceptibilities for X-ray diffraction at arbitrary wavelength

    Get PDF
    A novel method for the calculation of the X-ray susceptibility of a crystal in a wide range of radiation wavelengths is described. An analytical interpolation of one-electron wave functions is built to approximate the solution to Hartree± Fock equations for all atoms and ions of the periodic system of elements with high accuracy. These functions allow the calculation of the atomic form factors in the entire range of a transmitted momentum as well as the description of their anisotropy taking into account external and intracrystalline ®elds. Also, an analytical approximation for the force matrix of an arbitrary crystal is obtained and the microscopic calculation of the Debye±Waller factor for crystals with a complicated unit cell is presented

    Structure and optical properties of silicon layers with GaSb nanocrystals created by ion-beam synthesis

    Get PDF
    We have studied the ion-beam synthesis of GaSb nanocrystals in Si by high-fluence implantation of Sb and Ga ions followed by thermal annealing. RBS, TEM/TED, RS, and photoluminescence (PL) were employed to characterize the implanted layers. It was found that the nanocrystals size increases from 5 to 60 nm in the samples annealed at 900 8Cup to 20–90 nm in the samples annealed at 1100 8C. An existence of significant mechanical stresses within implanted layers has been detected. The stress values have been calculated from the shift of the Si first order Raman band. For the samples annealed at 900 8C a broad band in the spectral region of about 0.75–1.05 eV is detected in the PL spectra. The nature of this PL band is discussed
    corecore