78 research outputs found

    Soliton Resonances for MKP-II

    Get PDF
    Using the second flow - the Derivative Reaction-Diffusion system, and the third one of the dissipative SL(2,R) Kaup-Newell hierarchy, we show that the product of two functions, satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimension with negative dispersion (MKP-II). We construct Hirota's bilinear representation for both flows and combine them together as the bilinear system for MKP-II. Using this bilinear form we find one and two soliton solutions for the MKP-II. For special values of parameters our solution shows resonance behaviour with creation of four virtual solitons. Our approach allows one to interpret the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.Comment: 11 pages, 2 figures, Talk on International Conference "Nonlinear Physics. Theory and Experiment. III", 24 June-3 July, 2004, Gallipoli(Lecce), Ital

    Topological Field Theory and Nonlinear σ\sigma-Models on Symmetric Spaces

    Full text link
    We show that the classical non-abelian pure Chern-Simons action is related to nonrelativistic models in (2+1)-dimensions, via reductions of the gauge connection in Hermitian symmetric spaces. In such models the matter fields are coupled to gauge Chern-Simons fields, which are associated with the isotropy subgroup of the considered symmetric space. Moreover, they can be related to certain (integrable and non-integrable) evolution systems, as the Ishimori and the Heisenberg model. The main classical and quantum properties of these systems are discussed in connection with the topological field theory and the condensed matter physics.Comment: LaTeX format, 31 page

    Dissipation and Topologically Massive Gauge Theories in Pseudoeuclidean Plane

    Get PDF
    In the pseudo-euclidean metrics Chern-Simons gauge theory in the infrared region is found to be associated with dissipative dynamics. In the infrared limit the Lagrangian of 2+1 dimensional pseudo-euclidean topologically massive electrodynamics has indeed the same form of the Lagrangian of the damped harmonic oscillator. On the hyperbolic plane a set of two damped harmonic oscillators, each other time-reversed, is shown to be equivalent to a single undamped harmonic oscillator. The equations for the damped oscillators are proven to be the same as the ones for the Lorentz force acting on two particles carrying opposite charge in a constant magnetic field and in the electric harmonic potential. This provides an immediate link with Chern-Simons-like dynamics of Bloch electrons in solids propagating along the lattice plane with hyperbolic energy surface. The symplectic structure of the reduced theory is finally discussed in the Dirac constrained canonical formalism.Comment: 22 pages, LaTe

    Degenerate Four Virtual Soliton Resonance for KP-II

    Get PDF
    By using disipative version of the second and the third members of AKNS hierarchy, a new method to solve 2+1 dimensional Kadomtsev-Petviashvili (KP-II) equation is proposed. We show that dissipative solitons (dissipatons) of those members give rise to the real solitons of KP-II. From the Hirota bilinear form of the SL(2,R) AKNS flows, we formulate a new bilinear representation for KP-II, by which, one and two soliton solutions are constructed and the resonance character of their mutual interactions is studied. By our bilinear form, we first time created four virtual soliton resonance solution for KP-II and established relations of it with degenerate four-soliton solution in the Hirota-Satsuma bilinear form for KP-II.Comment: 10 pages, 5 figures, Talk on International Conference Nonlinear Physics. Theory and Experiment. III, 24 June-3 July, 2004, Gallipoli(Lecce), Ital

    Integrable Hierarchies and Information Measures

    Full text link
    In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated information theoretic extension, is described by a general nonlinear Schrodinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hiearchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct an integrable semi-relativistic NLS equation.Comment: 11 page

    Resonance NLS Solitons as Black Holes in Madelung Fluid

    Get PDF
    A new resonance version of NLS equation is found and embedded to the reaction-diffusion system, equivalent to the anti-de Sitter valued Heisenberg model, realizing a particular gauge fixing condition of the Jackiw-Teitelboim gravity. The space-time points where dispersion change the sign correspond to the event horizon, and the soliton solutions to the AdS black holes. The soliton with velocity bounded above describes evolution on the hyperboloid with nontrivial winding number and create under collisions the resonance states with a specific life time.Comment: Plain Tex, 12 pages, 6 figure

    Solitons of the Resonant Nonlinear Schrodinger Equation with Nontrivial Boundary Conditions and Hirota Bilinear Method

    Get PDF
    Physically relevant soliton solutions of the resonant nonlinear Schrodinger (RNLS) equation with nontrivial boundary conditions, recently proposed for description of uniaxial waves in a cold collisionless plasma, are considered in the Hirota bilinear approach. By the Madelung representation, the model is transformed to the reaction-diffusion analog of the NLS equation for which the bilinear representation, soliton solutions and their mutual interactions are studied.Comment: 15 pages, 1 figure, talk presented in Workshop `Nonlinear Physics IV: Theory and Experiment`, 22-30 June 2006, Gallipoli, Ital

    Young diagrams and N-soliton solutions of the KP equation

    Full text link
    We consider NN-soliton solutions of the KP equation, (-4u_t+u_{xxx}+6uu_x)_x+3u_{yy}=0 . An NN-soliton solution is a solution u(x,y,t)u(x,y,t) which has the same set of NN line soliton solutions in both asymptotics yy\to\infty and yy\to -\infty. The NN-soliton solutions include all possible resonant interactions among those line solitons. We then classify those NN-soliton solutions by defining a pair of NN-numbers (n+,n)({\bf n}^+,{\bf n}^-) with n±=(n1±,...,nN±),nj±{1,...,2N}{\bf n}^{\pm}=(n_1^{\pm},...,n_N^{\pm}), n_j^{\pm}\in\{1,...,2N\}, which labels NN line solitons in the solution. The classification is related to the Schubert decomposition of the Grassmann manifolds Gr(N,2N)(N,2N), where the solution of the KP equation is defined as a torus orbit. Then the interaction pattern of NN-soliton solution can be described by the pair of Young diagrams associated with (n+,n)({\bf n}^+,{\bf n}^-). We also show that NN-soliton solutions of the KdV equation obtained by the constraint u/y=0\partial u/\partial y=0 cannot have resonant interaction.Comment: 22 pages, 5 figures, some minor corrections and added one section on the KdV N-soliton solution

    Abelian Chern-Simons Vortices and Holomorphic Burgers' Hierarchy

    Get PDF
    The Abelian Chern-Simons Gauge Field Theory in 2+1 dimensions and its relation with holomorphic Burgers' Hierarchy is considered. It is shown that the relation between complex potential and the complex gauge field as in incompressible and irrotational hydrodynamics, has meaning of the analytic Cole-Hopf transformation, linearizing the Burgers Hierarchy in terms of the holomorphic Schr\"odinger Hierarchy. Then the motion of planar vortices in Chern-Simons theory, appearing as pole singularities of the gauge field, corresponds to motion of zeroes of the hierarchy. Using boost transformations of the complex Galilean group of the hierarchy, a rich set of exact solutions, describing integrable dynamics of planar vortices and vortex lattices in terms of the generalized Kampe de Feriet and Hermite polynomials is constructed. The results are applied to the holomorphic reduction of the Ishimori model and the corresponding hierarchy, describing dynamics of magnetic vortices and corresponding lattices in terms of complexified Calogero-Moser models. Corrections on two vortex dynamics from the Moyal space-time non-commutativity in terms of Airy functions are found.Comment: 15 pages, talk presented in Workshop `Nonlinear Physics IV: Theory and Experiment`, 22-30 June 2006, Gallipoli, Ital
    corecore