212 research outputs found
Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus
Circulating vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans
Objective: To study the association of vaspin with glucose metabolism.
Design: Cross-sectional and intervention study.
Subjects and methods: The association of serum vaspin with metabolic and anthropometric characteristics was investigated in 108 volunteers. Euglycemic–hyperinsulinemic clamps (EHC) were performed in 83 of the participants. Changes of circulating vaspin levels were additionally studied in a crossover study using 300 min EHC with lipid versus saline infusion (n=10).
Results: Neither glucose tolerance status nor insulin sensitivity, both as measured using EHCs and using homeostasis model assessment for insulin resistance (HOMA-IR), was significantly associated with serum vaspin in the cross-sectional study. Furthermore, there was no effect of short-term lipid-induced insulin resistance due to a 300 min intravenous lipid challenge on circulating vaspin. However, circulating vaspin levels were significantly elevated in women using oral contraceptives (OC), both compared to women without OC intake (1.17±0.26 vs 0.52±0.09 ng/ml, P=0.02) and males (1.17±0.26 vs 0.29±0.04 ng/ml, P=0.01). After exclusion of OC using females and stratification according to body mass index (BMI), a significant sexual dimorphism in subjects with a BMI <25 kg/m2 was observed (males 0.21±0.04 ng/ml versus females 0.70±0.16 ng/ml, P=0.009).
Conclusion: Our results support the existence of a sexual dimorphism regarding circulating vaspin. The lack of an association of serum vaspin with HOMA-IR and M value indicates, however, no major role for vaspin concerning insulin sensitivity in nondiabetic humans
Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice
Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved.
We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8±3.0 vs. 33.6±1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption
Global patterns and drivers of ecosystem functioning in rivers and riparian zones
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale
Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP
Aims/hypothesis
High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling.
Methods
Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake.
Results
Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity.
Conclusions/interpretation
The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
The 3′-Terminal Hexamer Sequence of Classical swine fever virus RNA Plays a Role in Negatively Regulating the IRES-Mediated Translation
The 3′ untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3′ UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a reporter assay in which the luciferase expression is under the control of CSFV 5′ and 3′ UTRs, we found that the 3′ UTR harbors the positive and negative regulatory elements for translational control. Unlike other stem loops, SLI acts as a repressor for expression of the reporter gene. The negative cis-acting element in SLI is further mapped to the very 3′-end hexamer CGGCCC sequence. Further, the CSFV IRES-mediated translation can be enhanced by the heterologous 3′-ends such as the poly(A) or the 3′ UTR of Hepatitis C virus (HCV). Interestingly, such an enhancement was repressed by flanking this hexamer to the end of poly(A) or HCV 3′ UTR. After sequence comparison and alignment, we have found that this hexamer sequence could hypothetically base pair with the sequence in the IRES IIId1, the 40 S ribosomal subunit binding site for the translational initiation, located at the 5′ UTR. In conclusion, we have found that the 3′-end terminal sequence can play a role in regulating the translation of CSFV
Mutations in FKBP10 can cause a severe form of isolated Osteogenesis imperfecta
<p>Abstract</p> <p>Background</p> <p>Mutations in the <it>FKBP10 </it>gene were first described in patients with Osteogenesis imperfecta type III. Two follow up reports found <it>FKBP10 </it>mutations to be associated with Bruck syndrome type 1, a rare disorder characterized by congenital contractures and bone fragility. This raised the question if the patients in the first report indeed had isolated Osteogenesis imperfecta or if Bruck syndrome would have been the better diagnosis.</p> <p>Methods</p> <p>The patients described here are affected by severe autosomal recessive Osteogenesis imperfecta without contractures.</p> <p>Results</p> <p>Homozygosity mapping identified <it>FKBP10 </it>as a candidate gene, and sequencing revealed a base pair exchange that causes a C-terminal premature stop codon in this gene.</p> <p>Conclusions</p> <p>Our study demonstrates that <it>FKBP10 </it>mutations not only cause Bruck syndrome or Osteogenesis imperfecta type III but can result in a severe type of isolated Osteogenesis imperfecta type IV with prenatal onset. Furthermore, it adds dentinogenesis imperfecta to the spectrum of clinical symptoms associated with <it>FKBP10 </it>mutations.</p
Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines
We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2
Production of HIV Particles Is Regulated by Altering Sub-Cellular Localization and Dynamics of Rev Induced by Double-Strand RNA Binding Protein
Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication
- …