836 research outputs found

    Alien Registration- Hagberg, Carl O. (Saint George, Knox County)

    Get PDF
    https://digitalmaine.com/alien_docs/13422/thumbnail.jp

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Changes in Circulating Angiogenic Cell Number and Function During and After an Ultramarathon

    Get PDF
    Click the PDF icon to download the abstract

    Benefit of pazopanib in advanced gastrointestinal stromal tumours : results from a phase II trial (SSG XXI, PAGIST)

    Get PDF
    Background: Patients with advanced gastrointestinal stromal tumours (GISTs) resistant to the tyrosine kinase inhibitors imatinib and sunitinib may be treated with regorafenib, which resulted in a median progression-free survival (PFS) of 4.8 months in the GRID trial. Also, pazopanib, another tyrosine kinase inhibitor, has been studied in a randomized, placebo-controlled trial (PAZOGIST) in the third line, which showed a PFS of 45.2% 4 months after study entry, but patients intolerant to sunitinib were also included. We designed another trial evaluating pazopanib, enrolling only patients with progression on both imatinib and sunitinib. Patients and methods: Since all eligible patients had progressive disease, we preferred a non-randomized, phase II multicentre trial so that all patients could receive a potentially active drug. Patients had a progressive metastatic or locally advanced GIST and were >= 18 years of age, with a performance status of 0-2, and sufficient organ functions. The primary endpoint was disease control rate (defined as complete remission thorn partial remission thorn stable disease) at 12 weeks on pazopanib. A Simon's two-stage analysis was used with an interim analysis 12 weeks after enrollment of the first 22 patients, and if passed, there was a full enrolment of 72 patients. GIST mutational analysis was done, and most patients had pazopanib plasma concentration measured after 12 weeks. Results: Seventy-two patients were enrolled. The disease control rate after 12 weeks was 44%, and the median PFS was 19.6 weeks (95% confidence interval 12.6-23.4 weeks). Pazopanib-related toxicity was moderate and manageable. No statistically significant differences were found related to mutations. Plasma concentrations of pazopanib had a formal but weak correlation with outcome. Conclusion: Pazopanib given in the third line to patients with GIST progressing on both imatinib and sunitinib was beneficial for about half of the patients. The PAGIST trial confirms the results from the PAZOGIST trial, and the median PFS achieved seems comparable to the PFS achieved with regorafenib in the third-line setting.Peer reviewe

    A preferential attachment model with random initial degrees

    Get PDF
    In this paper, a random graph process G(t)t1{G(t)}_{t\geq 1} is studied and its degree sequence is analyzed. Let (Wt)t1(W_t)_{t\geq 1} be an i.i.d. sequence. The graph process is defined so that, at each integer time tt, a new vertex, with WtW_t edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on G(t1)G(t-1), the probability that a given edge is connected to vertex i is proportional to di(t1)+δd_i(t-1)+\delta, where di(t1)d_i(t-1) is the degree of vertex ii at time t1t-1, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent τ=min{τW,τP}\tau=\min\{\tau_{W}, \tau_{P}\}, where τW\tau_{W} is the power-law exponent of the initial degrees (Wt)t1(W_t)_{t\geq 1} and τP\tau_{P} the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.Comment: In the published form of the paper, the proof of Proposition 2.1 is incomplete. This version contains the complete proo

    Streaming instability of slime mold amoebae: An analytical model

    Get PDF
    During the aggregation of amoebae of the cellular slime mould Dictyostelium, the interaction of chemical waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming instability. A simple, analytically tractable, model of Dictyostelium aggregation is developed to test this idea. The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynamics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and dispersion relation for cell streaming with the previous findings of model simulations and numerical stability analyses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is proposed
    corecore