14 research outputs found

    The study of the hydraulic conductivity of the plasmodesmal transport channels by the pulse NMR method

    Get PDF
    Radial self-diffusion of water in the absorbing zone of the roots of winter wheat (Triticum aestivum L.) seedlings was studied by the pulse-gradient-spin-echo NMR method. At the fixed time of diffusion observation, the diffusion decay of proton spin-echo was nonexponential; however, it could be reliably separated into three exponential components differing in the self-diffusion coefficients (SDC) of water molecules. Our experimental data corroborate the modern concept of two transport channels in plant plasmodesmata, which connect cytoplasmic and vacuolar (endoplasmic) compartments of adjacent cells into the unified supracellular continuums. Two SDC obtained by the kinetic analysis of diffusion decay were shown to depend on the expected changes in the hydraulic conductivity of the two above-mentioned plasmodesmal channels. To elucidate the role of ATP-dependent actomyosin proteins in the regulation of the hydraulic conductivity of plasmodesmata, we followed the changes in the water SDC induced by treating the roots with cytochalasin B (5 μM, 30 min), the inhibitor of actin polymerization; 2,3-butanedione monoxime (10 mM, 1 h), the inhibitor of myosin ATPase activity; and antimycin A (5 μM, 1 h) and sodium azide (10 mM, 30 min), the inhibitors of energy generation. The data thus obtained provided the basis for elaborating a new methodological approach to simultaneously monitoring the functional state of both plasmodesmal channels without any wound effect impairing their functions

    Actin-regulated water permeability of two transport channels of plasmodesmata in roots of winter wheat cultivars varying in drought resistance | Aktinreguliruemaia vodopronitsaemost' dvukh transportnykh kanalov plazmodesm v korniakh razlichaiushchikhsia po ustoichivosti sortov ozimoi pshenitsy.

    Get PDF
    In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast

    ANTIVIRAL PROPERTIES OF VERDAZYLS AND LEUCOVERDAZYLS AND THEIR ACTIVITY AGAINST GROUP B ENTEROVIRUSES

    Get PDF
    Enteroviruses are non-enveloped viruses of Enterovirus genus, Picornaviridae family, causing a variety of human diseases: from acute respiratory and intestinal infections to more severe pathologies including poliomyelitis, encephalitis, myocarditis, pancreatitis. Currently, no approved direct-acting antiviral drugs for treatment of enterovirus infections exists, whereas vaccination is available only for prevention of poliomyelitis and enterovirus 71 infection. Therefore, it is promising to conduct a search for inhibitors of enteroviruses life cycle in drug development to treat enterovirus infections. Here, antiviral properties of stable free radicals, verdazyls, and their precursors, leucoverdazyls, were investigated. It has been shown that leucoverdazyls vs verdazyls increased the survival of permissive cell culture infected with coxsackievirus. The activity range of the lead leucoverdazyl against RNA-containing and DNA-containing human viruses (in the viral yield reduction assay) and its proposed mechanism of action (time of addition assay) was studied. The lead compound suppressed reproduction of group B enteroviruses in vitro, with modest activity against influenza A virus and no activity against herpes virus type 1 and adenovirus type 5. The maximum decrease in viral titers was observed upon its addition to infected cells during early and middle stages of the virus life cycle. Thus, we concluded that the studied compound has a pronounced inhibitory activity against group B enteroviruses not belonging to the class of capsid binder inhibitors, without virucidal properties. Previously, we described antioxidant properties of leucoverdazyls. It is known that many viral infections are accompanied by production of reactive oxygen species and oxidative stress, and some compounds with antioxidant properties exhibit antiviral potential. Targeted chemical modifications of leucoverdazyls and further studies of leucoverdazyl mechanism of action as well as in vivo animal studies are needed. However, the results obtained may be useful for future development of new antiviral drugs to treat enteroviral infections. © Volobueva A.S. et al., 2023.The work was supported by a grant for young scientists from the St. Petersburg Pasteur Institute

    Actin-regulated water permeability of two transport channels of plasmodesmata in roots of winter wheat cultivars varying in drought resistance | Aktinreguliruemaia vodopronitsaemost' dvukh transportnykh kanalov plazmodesm v korniakh razlichaiushchikhsia po ustoichivosti sortov ozimoi pshenitsy.

    No full text
    In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast

    The study of the hydraulic conductivity of the plasmodesmal transport channels by the pulse NMR method

    No full text
    Radial self-diffusion of water in the absorbing zone of the roots of winter wheat (Triticum aestivum L.) seedlings was studied by the pulse-gradient-spin-echo NMR method. At the fixed time of diffusion observation, the diffusion decay of proton spin-echo was nonexponential; however, it could be reliably separated into three exponential components differing in the self-diffusion coefficients (SDC) of water molecules. Our experimental data corroborate the modern concept of two transport channels in plant plasmodesmata, which connect cytoplasmic and vacuolar (endoplasmic) compartments of adjacent cells into the unified supracellular continuums. Two SDC obtained by the kinetic analysis of diffusion decay were shown to depend on the expected changes in the hydraulic conductivity of the two above-mentioned plasmodesmal channels. To elucidate the role of ATP-dependent actomyosin proteins in the regulation of the hydraulic conductivity of plasmodesmata, we followed the changes in the water SDC induced by treating the roots with cytochalasin B (5 μM, 30 min), the inhibitor of actin polymerization; 2,3-butanedione monoxime (10 mM, 1 h), the inhibitor of myosin ATPase activity; and antimycin A (5 μM, 1 h) and sodium azide (10 mM, 30 min), the inhibitors of energy generation. The data thus obtained provided the basis for elaborating a new methodological approach to simultaneously monitoring the functional state of both plasmodesmal channels without any wound effect impairing their functions

    Actin-regulated water permeability of two transport channels of plasmodesmata in roots of winter wheat cultivars varying in drought resistance | Aktinreguliruemaia vodopronitsaemost' dvukh transportnykh kanalov plazmodesm v korniakh razlichaiushchikhsia po ustoichivosti sortov ozimoi pshenitsy.

    No full text
    In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast

    Actin-regulated water permeability of two transport channels of plasmodesmata in roots of winter wheat cultivars varying in drought resistance | Aktinreguliruemaia vodopronitsaemost' dvukh transportnykh kanalov plazmodesm v korniakh razlichaiushchikhsia po ustoichivosti sortov ozimoi pshenitsy.

    No full text
    In roots of 5-6-day old seedlings of three cultivars of the winter wheat, varying in drought-resistance: Bezostaya 1 (low resistant), Mironovskaya 808 (resistant), and Albidum 114 (highly resistant) water permeability of two transport channels of plasmodesmata was studied at the action of cytochalasin B, which is known to inhibit polymerization of cytoskeleton actin filaments, by a pulse method of NMR, on the background of increasing water loss in the seedlings. It has been found that the registered coefficients of water self diffusion, two of which (D2 and D3) depend on the water permeability of different transport channels of plasmodesmata, differ in opposite directions. This may suggest that in roots of drought-resistant plants, after a moderate water loss, a diffusive water flow through the cytoplasmic symplast increases (demonstrated by an increase of D2), while that through the vacuolar symplast decreases (seen by an increase of D3). After a high water loss in seedlings, we noticed an even greater increase in water permeability of the cytoplasmic symplast, and a decrease in water permeability of the vacuolar symplast, however, in the roots of low resistant cultivars these changes were poorly expressed, if at all. Under stress-less conditions cytochalasin B would result in an increased water transport through the cytoplasmic channel of plasmodesmata due apparently to a destruction of their actin-myosin sphincters. Both weak and average degrees of water loss would strengthen the cytochalasin B exerted influence on plasmodesmal water conductance, that may testify to a synergetic action of these two factors. After a significant water loss this action was kept only partially, because the inhibitor, on blocking the cytoplasmic channel, did increase at the same time the effect of water stress, limiting water flows through the vacuolar symplast and, simultaneously, raising the water inflow to the apoplast

    Synthesis and Biological Activity of Unsymmetrical Monoterpenylhetaryl Disulfides

    No full text
    New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48–88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73–95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity
    corecore