1,141 research outputs found

    Phase-locking transition in a chirped superconducting Josephson resonator

    Full text link
    By coupling a harmonic oscillator to a quantum system it is possible to perform a dispersive measurement that is quantum non-demolition (QND), with minimal backaction. A non-linear oscillator has the advantage of measurement gain, but what is the backaction? Experiments on superconducting quantum bits (qubits) coupled to a non-linear Josephson oscillator have thus far utilized the switching of the oscillator near a dynamical bifurcation for sensitivity, and have demonstrated partial QND measurement. The detailed backaction associated with the switching process is complex, and may ultimately limit the degree to which such a measurement can be QND. Here we demonstrate a new dynamical effect in Josephson oscillators by which the bifurcation can be accessed without switching. When energized with a frequency chirped drive with an amplitude close to a sharp, phase-locking threshold, the oscillator evolves smoothly in one of two diverging trajectories - a pointer for the state of a qubit. The observed critical behavior agrees well with theory and suggests a new modality for quantum state measurement.Comment: 5 pages, 4 figure

    Quantum versus classical phase-locking transition in a driven-chirped oscillator

    Full text link
    Classical and quantum-mechanical phase locking transition in a nonlinear oscillator driven by a chirped frequency perturbation is discussed. Different limits are analyzed in terms of the dimensionless parameters /2mω0α% P_{1}=\epsilon /\sqrt{2m\hbar \omega_{0}\alpha} and P2=(3β)/(4mα)P_{2}=(3\hbar \beta)/(4m\sqrt{\alpha}) (ϵ,\epsilon, α,\alpha, β\beta and ω0\omega_{0} being the driving amplitude, the frequency chirp rate, the nonlinearity parameter and the linear frequency of the oscillator). It is shown that for P2P1+1P_{2}\ll P_{1}+1, the passage through the linear resonance for P1P_{1} above a threshold yields classical autoresonance (AR) in the system, even when starting in a quantum ground state. In contrast, for % P_{2}\gg P_{1}+1, the transition involves quantum-mechanical energy ladder climbing (LC). The threshold for the phase-locking transition and its width in P1P_{1} in both AR and LC limits are calculated. The theoretical results are tested by solving the Schrodinger equation in the energy basis and illustrated via the Wigner function in phase space

    Posterior cricoid region fluoroscopic findings: the posterior cricoid plication.

    Get PDF
    The region posterior to the cricoid cartilage is challenging to assess fluoroscopically. The purpose of this investigation is to critically evaluate the posterior cricoid (PC) region on fluoroscopy and describe patterns of common findings. This was a case control study. All fluoroscopic swallowing studies performed between June 16, 2009, and February 9, 2010, were reviewed for features seen in the PC region. These findings were categorized into distinct patterns and compared to fluoroscopic studies performed in a cohort of normal volunteers. Two hundred patient studies and 149 healthy volunteer studies were reviewed. The mean age of the referred patient cohort and the volunteer cohort was 57 years (±19) and 61 years (±16), respectively (p > 0.05). The patient cohort was 53% male and the control cohort was 56% female (p > 0.05). Four groups were identified. Pharyngoesophageal webs were seen in 7% (10/149) of controls and 14% (28/200) of patients (p = 0.03). A PC arch impression was seen in 16% of patients (32/200) and controls (24/149) (p = 1). A PC plication was demonstrated in 23% (34/149) of controls and 30% (60/200) of patients (p = 0.13). No distinctive PC region findings were seen in 54% (81/149) of controls and 42% (84/200) of referred patients (p = 0.02). Four patients (2%) had both a web and a PC plication. Four categories of PC region findings were identified (unremarkable PC region, web, PC arch impression, and PC plication). Both patients referred for swallowing studies and healthy volunteers demonstrated esophageal webs, PC arch impressions, and PC plications. Only webs were more common in patients than in control subjects (p = 0.03). The PC impression and PC plication are likely to represent normal variants that may be identified on fluoroscopic swallow studies

    Quantum Fluctuations in the Chirped Pendulum

    Full text link
    An anharmonic oscillator when driven with a fast, frequency chirped voltage pulse can oscillate with either small or large amplitude depending on whether the drive voltage is below or above a critical value-a well studied classical phenomenon known as autoresonance. Using a 6 GHz superconducting resonator embedded with a Josephson tunnel junction, we have studied for the first time the role of noise in this non-equilibrium system and find that the width of the threshold for capture into autoresonance decreases as the square root of T, and saturates below 150 mK due to zero point motion of the oscillator. This unique scaling results from the non-equilibrium excitation where fluctuations, both quantum and classical, only determine the initial oscillator motion and not its subsequent dynamics. We have investigated this paradigm in an electrical circuit but our findings are applicable to all out of equilibrium nonlinear oscillators.Comment: 5 pages, 4 figure

    Population studies of sporadic cerebral amyloid angiopathy and dementia: a systematic review.

    Get PDF
    BACKGROUND: Deposition of amyloid-beta (Abeta) in vessel walls of the brain as cerebral amyloid angiopathy (CAA) could be a major factor in the pathogenesis of dementia. Here we investigate the relationship between dementia and the prevalence of CAA in older populations. We searched the literature for prospective population-based epidemiological clinicopathological studies, free of the biases of other sampling techniques, which were used as a comparison. METHODS: To identify population-based studies assessing CAA and dementia, a previous systematic review of population-based clinicopathological studies of ageing and dementia was employed. To identify selected-sample studies, PsychInfo (1806-April Week 3 2008), OVID MEDLINE (1950-April Week 2 2008) and Pubmed (searched 21 April 2008) databases were searched using the term "amyloid angiopathy". These databases were also employed to search for any population-based studies not included in the previous systematic review. Studies were included if they reported the prevalence of CAA relative to a dementia classification (clinical or neuropathological). RESULTS: Four population-based studies were identified. They showed that on average 55-59% of those with dementia displayed CAA (of any severity) compared to 28-38% of the non-demented. 37-43% of the demented displayed severe CAA in contrast to 7-24% of the non-demented. There was no overlap in the range of these averages and they were less variable and lower than those reported in 38 selected sample studies (demented v non-demented: 32-100 v 0-77% regardless of severity; 0-50 v 0-11% for severe only). CONCLUSION: CAA prevalence in populations is consistently higher in the demented as compared to the non-demented. This supports a significant role for CAA in the pathogenesis of dementia

    Dynamical Mordell-Lang conjecture for birational polynomial morphisms on A2\mathbb{A}^2

    Full text link
    We prove the dynamical Mordell-Lang conjecture for birational polynomial morphisms on A2\mathbb{A}^2

    On the Evolution of the Neutrino State inside the Sun

    Get PDF
    We reexamine the conventional physical description of the neutrino evolution inside the Sun. We point out that the traditional resonance condition has physical meaning only in the limit of small values of the neutrino mixing angle, theta<<1. For large values of theta, the resonance condition specifies neither the point of the maximal violation of adiabaticity in the nonadiabatic case, nor the point where the flavor conversion occurs at the maximal rate in the adiabatic case. The corresponding correct conditions, valid for all values of theta including theta>pi/4, are presented. An adiabaticity condition valid for all values of theta is also described. The results of accurate numerical computations of the level jumping probability in the Sun are presented. These calculations cover a wide range of Delta m^2, from the vacuum oscillation region to the region where the standard exponential approximation is good. A convenient empirical parametrization of these results in terms of elementary functions is given. The matter effects in the so-called "quasi-vacuum oscillation regime" are discussed. Finally, it is shown how the known analytical results for the exponential, 1/x, and linear matter distributions can be simply obtained from the formula for the hyperbolic tangent profile. An explicit formula for the jumping probability for the distribution N_e ~ (coth(x/l) +- 1) is obtained.Comment: 34 pages, 8 figure

    Sequential cavity method for computing free energy and surface pressure

    Full text link
    We propose a new method for the problems of computing free energy and surface pressure for various statistical mechanics models on a lattice Zd\Z^d. Our method is based on representing the free energy and surface pressure in terms of certain marginal probabilities in a suitably modified sublattice of Zd\Z^d. Then recent deterministic algorithms for computing marginal probabilities are used to obtain numerical estimates of the quantities of interest. The method works under the assumption of Strong Spatial Mixing (SSP), which is a form of a correlation decay. We illustrate our method for the hard-core and monomer-dimer models, and improve several earlier estimates. For example we show that the exponent of the monomer-dimer coverings of Z3\Z^3 belongs to the interval [0.78595,0.78599][0.78595,0.78599], improving best previously known estimate of (approximately) [0.7850,0.7862][0.7850,0.7862] obtained in \cite{FriedlandPeled},\cite{FriedlandKropLundowMarkstrom}. Moreover, we show that given a target additive error ϵ>0\epsilon>0, the computational effort of our method for these two models is (1/ϵ)O(1)(1/\epsilon)^{O(1)} \emph{both} for free energy and surface pressure. In contrast, prior methods, such as transfer matrix method, require exp((1/ϵ)O(1))\exp\big((1/\epsilon)^{O(1)}\big) computation effort.Comment: 33 pages, 4 figure

    Temperature Dependence of Magnetophonon Resistance Oscillations in GaAs/AlAs Heterostructures at High Filling Factors

    Full text link
    The temperature dependence of phonon-induced resistance oscillations has been investigated in two-dimensional electron system with moderate mobility at large filling factors at temperature range T = 7.4 - 25.4 K. The amplitude of phonon-induced oscillations has been found to be governed by quantum relaxation time which is determined by electron-electron interaction effects. This is in agreement with results recently obtained in ultra-high mobility two-dimensional electron system with low electron density [A. T. Hatke et al., Phys. Rev. Lett. 102, 086808 (2009)]. The shift of the main maximum of the magnetophonon resistance oscillations to higher magnetic fields with increasing temperature is observed.Comment: 5 pages, 4 figure
    corecore