23 research outputs found
Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair
The mouse hair coat comprises protective “primary” and thermo-regulatory “secondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda
Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering
Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body
Development of an NMR metabolomics-based tool for selection of flaxseed varieties
International audienceFlaxseed is an important source of lignans and ω-3 fatty acids, compounds which present interest in human health with many applications in food industry. It is therefore necessary to precisely know the metabolite content in flaxseed. A metabolomic approach using NMR was developed to achieve this goal. Due to particular characteristics of flaxseed (high level in oil, high amount in mucilage, and integration of the phenolics into a macromolecule), the extraction procedure had first to be optimized using an experimental design, based on the extraction time, in a water bath or an ultrasound bath, alkaline treatment, defatting, and centrifugation temperature. This methodology was then applied to several flaxseed varieties classified in function of their content in ω-3 fatty acid. The main differences in semi-polar metabolites between these varieties concern compounds of the phenylpropanoid pathway. Hydroxycinnamic acid glucoside and lignan content increase when ω-3 fatty acid content decrease whereas flavonoid content increase in the same way of ω-3 fatty acids
Concentration kinetics of secoisolariciresinol diglucoside and its biosynthetic precursor coniferin in developing flaxseed
International audienceINTRODUCTION: In the plant kingdom, flaxseed (Linum usitatissimum L.) is the richest source of secoisolariciresinol diglucoside (SDG), which is of great interest because of its potential health benefits for human beings. The information about the kinetics of SDG formation during flaxseed development is rare and incomplete. OBJECTIVE: In this study, a reversed-phase high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed to quantify SDG and coniferin, a key biosynthetic precursor of SDG in flaxseed. METHODOLOGY: Seeds from different developmental stages, which were scaled by days after flowering (DAF), were harvested. After alkaline hydrolysis, the validated HPLC method was applied to determine SDG and coniferin concentrations of flaxseed from different developing stages. RESULTS: Coniferin was found in the entire capsule as soon as flowering started and became undetectable 20 DAF. SDG was detected 6 DAF, and the concentration increased until maturity. On the other hand, the SDG amount in a single flaxseed approached the maximum around 25 DAF, before desiccation started. Concentration increase between 25 DAF and 35 DAF can be attributed to corresponding seed weight decrease. CONCLUSION: The biosynthesis of coniferin is not synchronous with that of SDG. Hence, the concentrations of SDG and coniferin change during flaxseed development
Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development
The main flax lignan, secoisolariciresinol diglucoside, is stored in a macromolecule containing other ester-bound phenolic compounds. In this study, NMR and HPLC-UV analyses were performed on flaxseeds harvested at different developmental stages to identify and quantify the main phenolic compounds produced during seed development. Extraction was carried out with or without alkaline hydrolysis to determine if these molecules accumulate in the lignan macromolecule and/or in a free form. Monolignol glucosides accumulate in a free form up to 9.85 mg/g dry matter at the early developmental stages. Hydroxycinnamic acid glucosides and flavonoid accumulate (up to 3.18 and 4.07 mg/g dry matter, respectively) in the later developmental stages and are ester-bound in the lignan macromolecule. Secosiolariciresinol diglucoside accumulates (up to 28.65 mg/g dry matter) in the later developmental stages in both forms, mainly ester-bound in the lignan macromolecule and slightly in a free form