1,540 research outputs found

    Computer system for monitoring radiorepirometry data

    Get PDF
    System monitors expired breath patterns simultaneously from four small animals after they have been injected with carbon-14 substrates. It has revealed significant quantitative differences in oxidation patterns of glucose following such mild treatments of rats as a change in diet or environment

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1G2...GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p56p4+2p3+4p212p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1G2...GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    First passage time exponent for higher-order random walks:Using Levy flights

    Full text link
    We present a heuristic derivation of the first passage time exponent for the integral of a random walk [Y. G. Sinai, Theor. Math. Phys. {\bf 90}, 219 (1992)]. Building on this derivation, we construct an estimation scheme to understand the first passage time exponent for the integral of the integral of a random walk, which is numerically observed to be 0.220±0.0010.220\pm0.001. We discuss the implications of this estimation scheme for the nthn{\rm th} integral of a random walk. For completeness, we also address the n=n=\infty case. Finally, we explore an application of these processes to an extended, elastic object being pulled through a random potential by a uniform applied force. In so doing, we demonstrate a time reparameterization freedom in the Langevin equation that maps nonlinear stochastic processes into linear ones.Comment: 4 figures, submitted to PR

    Fluctuation Dissipation Relation for a Langevin Model with Multiplicative Noise

    Full text link
    A random multiplicative process with additive noise is described by a Langevin equation. We show that the fluctuation-dissipation relation is satisfied in the Langevin model, if the noise strength is not so strong.Comment: 11 pages, 6 figures, other comment

    Correspondence

    Get PDF

    Dynamical approach to chains of scatterers

    Full text link
    Linear chains of quantum scatterers are studied in the process of lengthening, which is treated and analysed as a discrete dynamical system defined over the manifold of scattering matrices. Elementary properties of such dynamics relate the transport through the chain to the spectral properties of individual scatterers. For a single-scattering channel case some new light is shed on known transport properties of disordered and noisy chains, whereas translationally invariant case can be studied analytically in terms of a simple deterministic dynamical map. The many-channel case was studied numerically by examining the statistical properties of scatterers that correspond to a certain type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure

    Mixtures in non stable Levy processes

    Get PDF
    We analyze the Levy processes produced by means of two interconnected classes of non stable, infinitely divisible distribution: the Variance Gamma and the Student laws. While the Variance Gamma family is closed under convolution, the Student one is not: this makes its time evolution more complicated. We prove that -- at least for one particular type of Student processes suggested by recent empirical results, and for integral times -- the distribution of the process is a mixture of other types of Student distributions, randomized by means of a new probability distribution. The mixture is such that along the time the asymptotic behavior of the probability density functions always coincide with that of the generating Student law. We put forward the conjecture that this can be a general feature of the Student processes. We finally analyze the Ornstein--Uhlenbeck process driven by our Levy noises and show a few simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge

    Testing +/- 1-Weight Halfspaces

    Get PDF
    We consider the problem of testing whether a Boolean function f:{ − 1,1} [superscript n] →{ − 1,1} is a ±1-weight halfspace, i.e. a function of the form f(x) = sgn(w [subscript 1] x [subscript 1] + w [subscript 2] x [subscript 2 ]+ ⋯ + w [subscript n] x [subscript n] ) where the weights w i take values in { − 1,1}. We show that the complexity of this problem is markedly different from the problem of testing whether f is a general halfspace with arbitrary weights. While the latter can be done with a number of queries that is independent of n [7], to distinguish whether f is a ±-weight halfspace versus ε-far from all such halfspaces we prove that nonadaptive algorithms must make Ω(logn) queries. We complement this lower bound with a sublinear upper bound showing that O(nO(\sqrt{n}\cdot poly(1ϵ))(\frac{1}{\epsilon})) queries suffice
    corecore