68 research outputs found
On the generalised Ritt problem as a computational problem
The Ritt problem asks if there is an algorithm that tells whether one prime
differential ideal is contained in another one if both are given by their
characteristic sets. We give several equivalent formulations of this problem.
In particular, we show that it is equivalent to testing if a differential
polynomial is a zero divisor modulo a radical differential ideal. The technique
used in the proof of equivalence yields algorithms for computing a canonical
decomposition of a radical differential ideal into prime components and a
canonical generating set of a radical differential ideal. Both proposed
representations of a radical differential ideal are independent of the given
set of generators and can be made independent of the ranking.Comment: 9 page
Heteroclinic Ratchets in a System of Four Coupled Oscillators
We study an unusual but robust phenomenon that appears in an example system
of four coupled phase oscillators. We show that the system can have a robust
attractor that responds to a specific detuning between certain pairs of the
oscillators by a breaking of phase locking for arbitrary positive detunings but
not for negative detunings. As the dynamical mechanism behind this is a
particular type of heteroclinic network, we call this a 'heteroclinic ratchet'
because of its dynamical resemblance to a mechanical ratchet
Hyperbolic planforms in relation to visual edges and textures perception
We propose to use bifurcation theory and pattern formation as theoretical
probes for various hypotheses about the neural organization of the brain. This
allows us to make predictions about the kinds of patterns that should be
observed in the activity of real brains through, e.g. optical imaging, and
opens the door to the design of experiments to test these hypotheses. We study
the specific problem of visual edges and textures perception and suggest that
these features may be represented at the population level in the visual cortex
as a specific second-order tensor, the structure tensor, perhaps within a
hypercolumn. We then extend the classical ring model to this case and show that
its natural framework is the non-Euclidean hyperbolic geometry. This brings in
the beautiful structure of its group of isometries and certain of its subgroups
which have a direct interpretation in terms of the organization of the neural
populations that are assumed to encode the structure tensor. By studying the
bifurcations of the solutions of the structure tensor equations, the analog of
the classical Wilson and Cowan equations, under the assumption of invariance
with respect to the action of these subgroups, we predict the appearance of
characteristic patterns. These patterns can be described by what we call
hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of
the planforms that were used in [1, 2] to account for some visual
hallucinations. If these patterns could be observed through brain imaging
techniques they would reveal the built-in or acquired invariance of the neural
organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table
Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation
Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible âinflationsâ of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells
Analysis of the shearing instability in nonlinear convection and magnetoconvection
Numerical experiments on two-dimensional convection with or without a vertical magnetic field reveal a bewildering variety of periodic and aperiodic oscillations. Steady rolls can develop a shearing instability, in which rolls turning over in one direction grow at the expense of rolls turning over in the other, resulting in a net shear across the layer. As the temperature difference across the fluid is increased, two-dimensional pulsating waves occur, in which the direction of shear alternates. We analyse the nonlinear dynamics of this behaviour by first constructing appropriate low-order sets of ordinary differential equations, which show the same behaviour, and then analysing the global bifurcations that lead to these oscillations by constructing one-dimensional return maps. We compare the behaviour of the partial differential equations, the models and the maps in systematic two-parameter studies of both the magnetic and the non-magnetic cases, emphasising how the symmetries of periodic solutions change as a result of global bifurcations. Much of the interesting behaviour is associated with a discontinuous change in the leading direction of a fixed point at a global bifurcation; this change occurs when the magnetic field is introduced
Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations
In this paper we prove that periodic boundary-value problems (BVPs) for delay
differential equations are locally equivalent to finite-dimensional algebraic
systems of equations. We rely only on regularity assumptions that follow those
of the review by Hartung et al. (2006). Thus, the equivalence result can be
applied to differential equations with state-dependent delays (SD-DDEs),
transferring many results of bifurcation theory for periodic orbits to this
class of systems. We demonstrate this by using the equivalence to give an
elementary proof of the Hopf bifurcation theorem for differential equations
with state-dependent delays. This is an alternative and extension to the
original Hopf bifurcation theorem for SD-DDEs by Eichmann (2006).Comment: minor revision, correcting mistakes in formulation of Lemma 2.3 and
A.5 (which are also present in the Journal paper): center of neighborhood
must be in , which is the case for the main theore
Enumeration of reversible functions and its application to circuit complexity
We review combinational results to enumerate and classify reversible functions and investigate the application to circuit complexity. In particularly, we consider the effect of negating and permuting input and output variables and the effect of applying linear and affine transformations to inputs and outputs. We apply the results to reversible circuits and prove that minimum circuit realizations of functions in the same equivalence class differ at most in a linear number of gates in pres- ence of negation and permutation and at most in a quadratic number of gates in presence of linear and affine transformations
The Dipole Magnet Design for the ALICE DiMuon Arm Spectrometer
An essential part of the DiMuon Arm Spectrometer of the ALICE experiment is a conventional Dipole Magnet of about 890 tons which provides the bending power to measure the momenta of muons. The JINR engineering design of the Dipole Magnet, technical characteristics and description of the proposed manufacturing procedure are presented. The proposed Coil fabrication technique is based on winding of flat pancakes, which are subsequently bent on cylindrical mandrels. The pancakes are then stacked and cured with prepreg insulation. The method is demonstrated on hand of the prototype II, which consists of a pancake made with full-size aluminium conductor. Some details of electromagnetic and mechanical calculations are described. The results of measuring of mechanical and electrical characteristics of materials related to the coil composite structure are discussed
Mathematics of Gravitational Lensing: Multiple Imaging and Magnification
The mathematical theory of gravitational lensing has revealed many generic
and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and
complex-algebraic upper bounds in the case of single and multiple lens planes.
We discuss recent advances in the mathematics of stochastic lensing, discussing
a general formula for the global expected number of minimum lensed images as
well as asymptotic formulas for the probability densities of the microlensing
random time delay functions, random lensing maps, and random shear, and an
asymptotic expression for the global expected number of micro-minima. Multiple
imaging in optical geometry and a spacetime setting are treated. We review
global magnification relation results for model-dependent scenarios and cover
recent developments on universal local magnification relations for higher order
caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of
General Relativity and Gravitatio
- âŠ