51 research outputs found
Variational approximation for mixtures of linear mixed models
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped
data and can be estimated by likelihood maximization through the EM algorithm.
The conventional approach to determining a suitable number of components is to
compare different mixture models using penalized log-likelihood criteria such
as BIC.We propose fitting MLMMs with variational methods which can perform
parameter estimation and model selection simultaneously. A variational
approximation is described where the variational lower bound and parameter
updates are in closed form, allowing fast evaluation. A new variational greedy
algorithm is developed for model selection and learning of the mixture
components. This approach allows an automatic initialization of the algorithm
and returns a plausible number of mixture components automatically. In cases of
weak identifiability of certain model parameters, we use hierarchical centering
to reparametrize the model and show empirically that there is a gain in
efficiency by variational algorithms similar to that in MCMC algorithms.
Related to this, we prove that the approximate rate of convergence of
variational algorithms by Gaussian approximation is equal to that of the
corresponding Gibbs sampler which suggests that reparametrizations can lead to
improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG
DNA Interaction with Palladium Chelates of Biogenic Polyamines Using Atomic Force Microscopy and Voltammetric Characterization
The interaction of double-stranded DNA with two polynuclear Pd(II) chelates with the biogenic polyamines spermidine (Spd) and spermine (Spm), Pd(II)-Spd and Pd(II)-Spm, as well as with the free ligands Spd and Spm, was studied using atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface, voltammetry at a glassy carbon (GC) electrode, and gel electrophoresis. The AFM and voltammetric results showed that the interaction of Spd and Spm with DNA occurred even for a low concentration of polyamines and caused no oxidative damage to DNA. The Pd(II)-Spd and Pd(II)-Spm complexes were found to induce greater morphological changes in the dsDNA conformation, when compared with their ligands. The interaction was specific, inducing distortion and local denaturation of the B-DNA structure with release of some guanine bases. The DNA strands partially opened give rise to palladium intra- and interstrand cross-links, leading to the formation of DNA adducts and aggregates, particularly in the case of the Pd(II)-Spd complex
Analytic Controllability of Time-Dependent Quantum Control Systems
The question of controllability is investigated for a quantum control system
in which the Hamiltonian operator components carry explicit time dependence
which is not under the control of an external agent. We consider the general
situation in which the state moves in an infinite-dimensional Hilbert space, a
drift term is present, and the operators driving the state evolution may be
unbounded. However, considerations are restricted by the assumption that there
exists an analytic domain, dense in the state space, on which solutions of the
controlled Schrodinger equation may be expressed globally in exponential form.
The issue of controllability then naturally focuses on the ability to steer the
quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert
space -- and thus on analytic controllability. A relatively straightforward
strategy allows the extension of Lie-algebraic conditions for strong analytic
controllability derived earlier for the simpler, time-independent system in
which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic
time dependence. Enlarging the state space by one dimension corresponding to
the time variable, we construct an augmented control system that can be treated
as time-independent. Methods developed by Kunita can then be implemented to
establish controllability conditions for the one-dimension-reduced system
defined by the original time-dependent Schrodinger control problem. The
applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page
Some Aspects of Latent Structure Analysis
Latent structure models involve real, potentially observable variables and latent, unobservable variables. The framework includes various particular types of model, such as factor analysis, latent class analysis, latent trait analysis, latent profile models, mixtures of factor analysers, state-space models and others. The simplest scenario, of a single discrete latent variable, includes finite mixture models, hidden Markov chain models and hidden Markov random field models. The paper gives a brief tutorial of the application of maximum likelihood and Bayesian approaches to the estimation of parameters within these models, emphasising especially the fact that computational complexity varies greatly among the different scenarios. In the case of a single discrete latent variable, the issue of assessing its cardinality is discussed. Techniques such as the EM algorithm, Markov chain Monte Carlo methods and variational approximations are mentioned
Polynuclear palladium complexes with biogenic polyamines: AFM and voltammetric characterization
Polynuclear Pd(II) complexes with biogenic polyamines present great potential clinical importance, due to their antiproliferative and cytotoxic activity coupled to less severe side-effects. The adsorption process and the redox behaviour of two polynuclear palladium chelates with spermine (Spm) and spermidine (Spd), Pd(II)-Spm and Pd(II)-Spd, as well as of their ligands Spm and Spd, were studied using atomic force microscopy (AFM) and voltammetry at highly oriented pyrolytic graphite and glassy carbon electrodes. AFM revealed different adsorption patterns and degree of surface coverage, correlated with the chelate structure, concentration of the solution, applied potential and voltammetric behaviour of the Spm, Spd, Pd(II)-Spm and Pd(II)-Spd systems. The voltammetric study of Spm and Spd showed that these biogenic polyamines undergo an irreversible and pH-dependent oxidation. In acid medium the polyamines are fully protonated, rendering their oxidation more difficult. With increasing pH the oxidation potential for both Spm and Spd is shifted to less positive values, indicating a greater ease of oxidation in alkaline medium. The Pd(II)-Spm and Pd(II)-Spd complexes dissociate at high negative or high positive potentials. The application of a positive potential induced the oxidation of these Pd complexes and the formation of mixed layers of palladium oxides, Spm/Spd and Pd(II)-Spm/Pd(II)-Spd
DNA Interaction with Palladium Chelates of Biogenic Polyamines Using Atomic Force Microscopy and Voltammetric Characterization
The interaction of double-stranded DNA with two polynuclear Pd(II) chelates with the biogenic polyamines spermidine (Spd) and spermine (Spm), Pd(II)-Spd and Pd(II)-Spm, as well as with the free ligands Spd and Spm, was studied using atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface, voltammetry at a glassy carbon (GC) electrode, and gel electrophoresis. The AFM and voltammetric results showed that the interaction of Spd and Spm with DNA occurred even for a low concentration of polyamines and caused no oxidative damage to DNA. The Pd(II)-Spd and Pd(II)-Spm complexes were found to induce greater morphological changes in the dsDNA conformation, when compared with their ligands. The interaction was specific, inducing distortion and local denaturation of the B-DNA structure with release of some guanine bases. The DNA strands partially opened give rise to palladium intra- and interstrand cross-links, leading to the formation of DNA adducts and aggregates, particularly in the case of the Pd(II)-Spd complex
- …