10 research outputs found

    High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements

    Get PDF
    In this paper, a novel single-input three-output (SITO) second-order multifunction active voltage filter with high-input impedance is proposed. The proposed circuit is based on using the recently reported active building block, namely differential difference current conveyor transconductance amplifier (DDCCTA). It employs one DDCCTA as active element together with one grounded resistor and two grounded capacitors as passive elements. The circuit still maintains the following advantageous features : (i) the simultaneous realization of lowpass, bandpass and highpass responses from the same topology, (ii) no requirements for component matching conditions, (iii) electronic controllability of important filter parameters, (iv) simpler structure due to contains only one DDCCTA and three passive elements, and (v) low sensitivity performance. The non-ideal gain effects of the developed filter are examined and PSPICE simulation results are included using 0.5 um MIETEC CMOS technology parameters

    Analog Filter Design Revisited: Circuit Configurations Using Newer Varieties of CCs

    No full text

    Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts.

    No full text
    Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector
    corecore