545 research outputs found

    Petrochemical Industry (review)

    Get PDF

    The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    Get PDF
    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output (the photon number flux N(t) entering the final photodetector) commutes with itself at different times in the Heisenberg Picture, [N(t), N(t')] = 0, and thus can be regarded as classical. (ii) This number flux is linear in the test-mass initial position and momentum operators x_o and p_o, and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering -- e.g., in most interferometers, by discarding data near the test masses' 1 Hz swinging freqency. The test-mass operators x_o and p_o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t), N(t')]. That contribution is cancelled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations. These conclusions are true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that are free from the complexities of real measuring systems.Comment: Submitted to Physical Review D; Revtex, no figures, prints to 14 pages. Second Revision 1 December 2002: minor rewording for clarity, especially in Sec. II.B.3; new footnote 3 and passages before Eq. (2.35) and at end of Sec. III.B.

    Phase diffusion pattern in quantum nondemolition systems

    Get PDF
    We quantitatively analyze the dynamics of the quantum phase distribution associated with the reduced density matrix of a system, as the system evolves under the influence of its environment with an energy-preserving quantum nondemolition (QND) type of coupling. We take the system to be either an oscillator (harmonic or anharmonic) or a two-level atom (or equivalently, a spin-1/2 system), and model the environment as a bath of harmonic oscillators, initially in a general squeezed thermal state. The impact of the different environmental parameters is explicitly brought out as the system starts out in various initial states. The results are applicable to a variety of physical systems now studied experimentally with QND measurements.Comment: 18 pages, REVTeX, 8 figure

    Measuring nanomechanical motion with an imprecision far below the standard quantum limit

    Full text link
    We demonstrate a transducer of nanomechanical motion based on cavity enhanced optical near-fields capable of achieving a shot-noise limited imprecision more than 10 dB below the standard quantum limit (SQL). Residual background due to fundamental thermodynamical frequency fluctuations allows a total imprecision 3 dB below the SQL at room temperature (corresponding to 600 am/Hz^(1/2) in absolute units) and is known to reduce to negligible values for moderate cryogenic temperatures. The transducer operates deeply in the quantum backaction dominated regime, prerequisite for exploring quantum backaction, measurement-induced squeezing and accessing sub-SQL sensitivity using backaction evading techniques

    Zeno and Anti Zeno effect for a two level system in a squeezed bath

    Full text link
    We discuss the appearance of Zeno (QZE) or anti-Zeno (QAE) effect in an exponentially decaying system. We consider the quantum dynamics of a continuously monitored two level system interacting with a squeezed bath. We find that the behavior of the system depends critically on the way in which the squeezed bath is prepared. For specific choices of the squeezing phase the system shows Zeno or anti-Zeno effect in conditions for which it would decay exponentially if no measurements were done. This result allows for a clear interpretation in terms of the equivalent spin system interacting with a fictitious magnetic field.Comment: 18 pages, 7 figures;added references for section 4;changes in the nomenclatur

    Phonon laser action in a tunable, two-level photonic molecule

    Full text link
    The phonon analog of an optical laser has long been a subject of interest. We demonstrate a compound microcavity system, coupled to a radio-frequency mechanical mode, that operates in close analogy to a two-level laser system. An inversion produces gain, causing phonon laser action above a pump power threshold of around 50 μ\muW. The device features a continuously tunable, gain spectrum to selectively amplify mechanical modes from radio frequency to microwave rates. Viewed as a Brillouin process, the system accesses a regime in which the phonon plays what has traditionally been the role of the Stokes wave. For this reason, it should also be possible to controllably switch between phonon and photon laser regimes. Cooling of the mechanical mode is also possible.Comment: 4 pages, 4 figure

    QND measurements for future gravitational-wave detectors

    Full text link
    Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information on quantum noise in GW interferometer and several new items into Reference list were adde

    Cooling a mechanical resonator via coupling to a tunable double quantum dot

    Full text link
    We study the cooling of a mechanical resonator (MR) that is capacitively coupled to a double quantum dot (DQD). The MR is cooled by the dynamical backaction induced by the capacitive coupling between the DQD and the MR. The DQD is excited by a microwave field and afterwards a tunneling event results in the decay of the excited state of the DQD. An important advantage of this system is that both the energy level splitting and the decay rate of the DQD can be well tuned by varying the gate voltage. We find that the steady average occupancy, below unity, of the MR can be achieved by changing both the decay rate of the excited state and the detuning between the transition frequency of the DQD and the microwave frequency, in analogy to the laser sideband cooling of an atom or trapped ion in atomic physics. Our results show that the cooling of the MR to the ground state is experimentally implementable.Comment: 10 pages, 5 figure

    Gravitational lensing by gravitational waves

    Full text link
    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.Comment: 9 pages, 3 figure

    Chaos and quantum-nondemolition measurements

    Get PDF
    The problem of chaotic behavior in quantum mechanics is investigated against the background of the theory of quantum-nondemolition (QND) measurements. The analysis is based on two relevant features: The outcomes of a sequence of QND measurements are unambiguously predictable, and these measurements actually can be performed on one single system without perturbing its time evolution. Consequently, QND measurements represent an appropriate framework to analyze the conditions for the occurrence of ‘‘deterministic randomness’’ in quantum systems. The general arguments are illustrated by a discussion of a quantum system with a time evolution that possesses nonvanishing algorithmic complexity
    corecore