932 research outputs found

    "Double-trace" Deformations, Boundary Conditions and Spacetime Singularities

    Get PDF
    Double-trace deformations of the AdS/CFT duality result in a new perturbation expansion for string theory, based on a non-local worldsheet. We discuss some aspects of the deformation in the low energy gravity approximation, where it appears as a change in the boundary condition of fields. We relate unique features of the boundary of AdS to the worldsheet becoming non-local, and conjecture that non-local worldsheet actions may be generic in other classes of backgrounds.Comment: 21 pages, 2 figures, harvmac. v2: minor changes, references added, version sent to JHEP. v3 minor correction

    The Effective Potential of the N=0* Yang-Mills Theory

    Full text link
    We study the \N=4 SYM theory with SU(N) gauge group in the large N limit, deformed by giving equal mass to the four adjoint fermions. With this modification, a potential is dynamically generated for the six scalars in the theory, \phi^i. We show that the resulting theory is stable (perturbatively in the 't Hooft coupling), and that there are some indications that =0 is the vacuum of the theory. Using the AdS/CFT correspondence, we compare the results to the corresponding supergravity computation, i.e. brane probing a deformed AdS_5 x S^5 background, and we find qualitative agreement.Comment: 12 pages, 2 figures, version to appear in JHE

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur

    Intensity correlations and mesoscopic fluctuations of diffusing photons in cold atoms

    Full text link
    We study the angular correlation function of speckle patterns that result from multiple scattering of photons by cold atomic clouds. We show that this correlation function becomes larger than the value given by Rayleigh law for classical scatterers. These large intensity fluctuations constitute a new mesoscopic interference effect specific to atom-photon interactions, that could not be observed in other systems such as weakly disordered metals. We provide a complete description of this behavior and expressions that allow for a quantitative comparison with experiments.Comment: 4 pages, 2 figure

    The Lensed Arc Production Efficiency of Galaxy Clusters: A Comparison of Matched Observed and Simulated Samples

    Full text link
    We compare the statistical properties of giant gravitationally lensed arcs produced in matched simulated and observed cluster samples. The observed sample consists of 10 X-ray selected clusters at redshifts z ~ 0.2 imaged with HST by Smith et al. The simulated dataset is produced by lensing the Hubble Deep Field, which serves as a background source image, with 150 realizations (different projections and shifts) of five simulated z = 0.2 clusters from a LambdaCDM N-body simulation. The real and simulated clusters have similar masses, the real photometric redshift is used for each background source, and all the observational effects influencing arc detection in the real dataset, including light from cluster galaxies, are simulated in the artificial dataset. We develop, and apply to both datasets, an objective automatic arc-finding algorithm. We find consistent arc statistics in the real and in the simulated sample, with an average of ~ 1 detected giant (length to width ratio >= 10) arc per cluster and ~ 0.2 giant luminous (R<22.3 mag) arc per cluster. Thus, taking into account a realistic source population and observational effects, the clusters predicted by LambdaCDM have the same arc-production efficiency as the observed clusters. If, as suggested by other studies, there is a discrepancy between the predicted and the observed total number of arcs on the sky, it must be the result of differences between the redshift dependent cluster mass functions, and not due to differences in the lensing efficiency of the most massive clusters.Comment: 13 pages, Accepted by ApJ, High resolution version of the paper can be found at: ftp://wise3.tau.ac.il/pub/assafh/horesh_arcs_stat_2005.ps.gz, Arc-finding algorithm available at: http://wise-obs.tau.ac.il/~assafh/ ; A comment was added ; A missing x-axis label in Fig. 7 was adde

    Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide

    No full text
    Thermally grown silicon oxide layer was implanted at room temperature with 300keV Xe at fluences ranging from 0.5 to 5x1016^16Xe/cm2^2. Bubbles created after Xe-implantation provided a low-k silicon oxide that has potential use as a dielectric material for interconnects in Si integrated circuits. Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS) and Positron Annihilation Spectroscopy (PAS) were used to provide a comprehensive characterization of defects (bubbles, vacancy, gas atoms and other types of defects) created by Xe implantation in SiO2SiO_2 layer. These measurements suggest that the bubbles observed with TEM for all fluences were a consequence of the interaction between Xe and vacancies (V), with VnXemV_nXe_m complexes created in the zone where V and Xe profiles overlap. Negatively charged defects such as (SiOSi-O^-, SiOOSi-O-O^- and O2O_2^-) are also created after implantation

    On Witten's Instability and Winding Tachyons

    Get PDF
    We investigate, from a spacetime perspective, some aspects of Horowitz's recent conjecture that black strings may catalyze the decay of Kaluza-Klein spacetimes into a bubble of nothing. We identify classical configurations that interpolate between flat space and the bubble, and discuss the energetics of the transition. We investigate the effects of winding tachyons on the size and shape of the barrier and find no evidence at large compactification radius that tachyons enhance the tunneling rate. For the interesting radii, of order the string scale, the question is difficult to answer due to the failure of the α\alpha^\prime expansion.Comment: 15 pages, 2 figures, Late

    The Moduli Space and M(atrix) Theory of 9d N=1 Backgrounds of M/String Theory

    Get PDF
    We discuss the moduli space of nine dimensional N=1 supersymmetric compactifications of M theory / string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Mobius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Mobius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2+1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.Comment: 43 pages, 7 figures, JHEP format. v3: typos correcte

    An Early and Comprehensive Millimetre and Centimetre Wave and X-ray Study of SN 2011dh: a Non-Equipartition Blast Wave Expanding into a Massive Stellar Wind

    Get PDF
    Only a handful of supernovae (SNe) have been studied in multiwavelengths from the radio to X-rays, starting a few days after the explosion. The early detection and classification of the nearby Type IIb SN 2011dh/PTF 11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at one of the youngest phase ever of a core-collapse SN (days 3–12 after the explosion) in the radio, millimetre and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding SN shock wave does not exhibit equipartition (ϵe/ϵB ∼ 1000), and is expanding into circumstellar material that is consistent with a density profile falling like R−2. Within modelling uncertainties we find an average velocity of the fast parts of the ejecta of 15 000 ± 1800 km s−1, contrary to previous analysis. This velocity places SN 2011dh in an intermediate blast wave regime between the previously defined compact and extended SN Type IIb subtypes. Our results highlight the importance of early (∼1 d) high-frequency observations of future events. Moreover, we show the importance of combined radio/X-ray observations for determining the microphysics ratio ϵe/ϵB
    corecore