44 research outputs found

    Investigation of reactive‐ion‐etch‐induced damage of InP/InGaAs multiple quantum wells by photoluminescence

    Get PDF
    The effects of CH4/H2 reactive ion etching (RIE) on the optical properties of an InP/InGaAs multiple‐quantum‐well structure have been investigated by low‐temperature photoluminescence (PL). The structure consisted of eight InGaAs quantum wells, lattice matched to InP, with nominal thicknesses of 0.5, 1, 2, 3, 5, 10, 20, and 70 monolayers, respectively, on top of a 200‐nm‐thick layer of InGaAs for calibration. The design of this structure allowed etch‐induced damage depth to be obtained from the PL spectra due to the different confinement energies of the quantum wells. The samples showed no significant decrease of luminescence intensity after RIE. However, the observed shift and broadening of the PL peaks from the quantum wells indicate that intermixing of well and barrier material increased with etch time. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70403/2/JAPIAU-78-3-1528-1.pd

    Pregnancy and Breast Cancer: when They Collide

    Get PDF
    Women of childbearing age experience an increased breast cancer risk associated with a completed pregnancy. For younger women, this increase in breast cancer risk is transient and within a decade after parturition a cross over effect results in an ultimate protective benefit. The post-partum peak of increased risk is greater in women with advanced maternal age. Further, their lifetime risk for developing breast cancer remains elevated for many years, with the cross over to protection occurring decades later or not at all. Breast cancers diagnosed during pregnancy and within a number of years post-partum are termed pregnancy-associated or PABC. Contrary to popular belief, PABC is not a rare disease and could affect up to 40,000 women in 2009. The collision between pregnancy and breast cancer puts women in a fear-invoking paradox of their own health, their pregnancy, and the outcomes for both. We propose two distinct subtypes of PABC: breast cancer diagnosed during pregnancy and breast cancer diagnosed post-partum. This distinction is important because emerging epidemiologic data highlights worsened outcomes specific to post-partum cases. We reported that post-partum breast involution may be responsible for the increased metastatic potential of post-partum PABC. Increased awareness and detection, rationally aggressive treatment, and enhanced understanding of the mechanisms are imperative steps toward improving the prognosis for PABC. If we determine the mechanisms by which involution promotes metastasis of PABC, the post-partum period can be a window of opportunity for intervention strategies

    Exploring the Gain of Function Contribution of AKT to Mammary Tumorigenesis in Mouse Models

    Get PDF
    Elevated expression of AKT has been noted in a significant percentage of primary human breast cancers, mainly as a consequence of the PTEN/PI3K pathway deregulation. To investigate the mechanistic basis of the AKT gain of function-dependent mechanisms of breast tumorigenesis, we explored the phenotype induced by activated AKT transgenes in a quantitative manner. We generated several transgenic mice lines expressing different levels of constitutively active AKT in the mammary gland. We thoroughly analyzed the preneoplastic and neoplastic mammary lesions of these mice and correlated the process of tumorigenesis to AKT levels. Finally, we analyzed the impact that a possible senescent checkpoint might have in the tumor promotion inhibition observed, crossing these lines to mammary specific p53(R172H) mutant expression, and to p27 knock-out mice. We analyzed the benign, premalignant and malignant lesions extensively by pathology and at molecular level analysing the expression of proteins involved in the PI3K/AKT pathway and in cellular senescence. Our findings revealed an increased preneoplastic phenotype depending upon AKT signaling which was not altered by p27 or p53 loss. However, p53 inactivation by R172H point mutation combined with myrAKT transgenic expression significantly increased the percentage and size of mammary carcinoma observed, but was not sufficient to promote full penetrance of the tumorigenic phenotype. Molecular analysis suggest that tumors from double myrAKT;p53(R172H) mice result from acceleration of initiated p53(R172H) tumors and not from bypass of AKT-induced oncogenic senescence. Our work suggests that tumors are not the consequence of the bypass of senescence in MIN. We also show that AKT-induced oncogenic senescence is dependent of pRb but not of p53. Finally, our work also suggests that the cooperation observed between mutant p53 and activated AKT is due to AKT-induced acceleration of mutant p53-induced tumors. Finally, our work shows that levels of activated AKT are not essential in the induction of benign or premalignant tumors, or in the cooperation of AKT with other tumorigenic signal such as mutant p53, once AKT pathway is activated, the relative level of activity seems not to determine the phenotype

    Tunneling spectroscopy at nanometer scale in MBE-grown (Al)GaAs multilayers

    No full text
    no abstrac

    On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides

    No full text
    We report a novel approach for on-chip electrical detection of the radiation guided by dielectric-loaded surface plasmon polariton waveguides (DLSPPW) and DLSPPW-based components. The detection is realized by fabricating DLSPPW components on the surface of a gold (Au) pad supported by a silicon (Si) substrate supplied with aluminum pads facilitating electrical connections, with the gold pad being perforated in a specific locations below the DLSPPWs in order to allow a portion of the DLSPPW-guided radiation to leak into the Si-substrate, where it is absorbed and electrically detected. We present two-dimensional photocurrent maps obtained when the laser beam is scanning across the gold pad containing the fabricated DLSPPW components that are excited via grating couplers located at the DLSPPW tapered terminations. By comparing photocurrent signals obtained when scanning over a DLSPPW straight waveguide with those related to a DLSPPW racetrack resonator, we first determine the background signal level and then the corrected DLSPPW resonator spectral response, which is found consistent with that obtained from full wave numerical simulations. The approach developed can be extended to other plasmonic waveguide configurations and advantageously used for rapid characterization of complicated plasmonic circuits.Comment: 17 pages, 5 figure

    Dielectric loaded surface plasmon waveguides for datacom applications

    No full text
    International audienceWe first report on design, fabrication and characterizations of thermally-controlled plasmonic routers relying on the interference of a plasmonic and a photonic mode supported by wide enough dielectric loaded waveguides. We show that, by owing a current through the gold lm on which the dielectric waveguides are deposited, the length of the beating created by the interference of the two modes can be controlled accurately. By operating such a plasmonic dual-mode interferometer switch, symmetric extinction ratio of 7dB are obtained at the output ports of a 2x2 router. Next, we demonstrate ber-to-ber characterizations of stand-alone dielectric loaded surface plasmon waveguide (DLSPPW) devices by using grating couplers. The couplers are comprised of dielectric loaded gratings with carefully chosen periods and duty-cycles close to 0.5. We show that insertion loss below 10dB per coupler can be achieved with optimized gratings. This coupling scheme is used to operate Bit-Error-Rate (BER) measurements for the transmission of a 10Gbits/s signal along a stand-alone straight DLSPPW. We show in particular that these waveguides introduce a rather small BER power penalty (below 1dB) demonstrating the suitability of this plasmonic waveguiding platform for high-bit rate transmission
    corecore