294 research outputs found
Group velocity control in the ultraviolet domain via interacting dark-state resonances
The propagation of a weak probe field in a laser-driven four-level atomic
system is investigated. We choose mercury as our model system, where the probe
transition is in the ultraviolet region. A high-resolution peak appears in the
optical spectra due to the presence of interacting dark resonances. We show
that this narrow peak leads to superluminal light propagation with strong
absorption, and thus by itself is only of limited interest. But if in addition
a weak incoherent pump field is applied to the probe transition, then the peak
structure can be changed such that both sub- and superluminal light propagation
or a negative group velocity can be achieved without absorption, controlled by
the incoherent pumping strength
Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption
Ultralow-power diode-laser radiation is employed to induce photodesorption of
cesium from a partially transparent thin-film cesium adsorbate on a solid
surface. Using resonant Raman spectroscopy, we demonstrate that this
photodesorption process enables an accurate local optical control of the
density of dimer molecules in alkali-metal vapors.Comment: 4 pages, 4 figure
Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission
Article on femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission
- …