484 research outputs found

    Spatial Distribution of Disease-associated Variants in Three-dimensional Structures of Protein Complexes

    No full text

    The Tunka Experiment: Towards a 1-km^2 Cherenkov EAS Array in the Tunka Valley

    Full text link
    The project of an EAS Cherenkov array in the Tunka valley/Siberia with an area of about 1 km^2 is presented. The new array will have a ten times bigger area than the existing Tunka-25 array and will permit a detailed study of the cosmic ray energy spectrum and the mass composition in the energy range from 10^15 to 10^18 eV.Comment: 3 pages, 2 figures, to be published in IJMP

    Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore

    Tunka-Rex: energy reconstruction with a single antenna station (ARENA 2016)

    Full text link
    The Tunka-Radio extension (Tunka-Rex) is a radio detector for air showers in Siberia. From 2012 to 2014, Tunka-Rex operated exclusively together with its host experiment, the air-Cherenkov array Tunka-133, which provided trigger, data acquisition, and an independent air-shower reconstruction. It was shown that the air-shower energy can be reconstructed by Tunka-Rex with a precision of 15\% for events with signal in at least 3 antennas, using the radio amplitude at a distance of 120\,m from the shower axis as an energy estimator. Using the reconstruction from the host experiment Tunka-133 for the air-shower geometry (shower core and direction), the energy estimator can in principle already be obtained with measurements from a single antenna, close to the reference distance. We present a method for event selection and energy reconstruction, requiring only one antenna, and achieving a precision of about 20\%. This method increases the effective detector area and lowers thresholds for zenith angle and energy, resulting in three times more events than in the standard reconstruction

    Discovery of an unusual bright eclipsing binary with the longest known period: TYC 2505-672-1 / MASTER OT J095310.04+335352.8

    Full text link
    We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.Comment: 8 figures, 9 pages, Astronomy and astrophysics in prin

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding

    Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory

    Full text link
    Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio signal of air-showers in coincidence with the non-imaging air-Cherenkov array Tunka-133. Furthermore, this year additional antennas will go into operation triggered by the new scintillator array Tunka-Grande measuring the secondary electrons and muons of air showers. Tunka-Rex is a demonstrator for how economic an antenna array can be without losing significant performance: we have decided for simple and robust SALLA antennas, and we share the existing DAQ running in slave mode with the PMT detectors and the scintillators, respectively. This means that Tunka-Rex is triggered externally, and does not need its own infrastructure and DAQ for hybrid measurements. By this, the performance and the added value of the supplementary radio measurements can be studied, in particular, the precision for the reconstructed energy and the shower maximum in the energy range of approximately 1017101810^{17}-10^{18}\,eV. Here we show first results on the energy reconstruction indicating that radio measurements can compete with air-Cherenkov measurements in precision. Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS Conference Proceeding
    corecore