16 research outputs found

    Structure studies of a phospholipid monolayer coupled to dextran sulfate

    No full text
    The negatively charged polymer dextran sulfate can couple to a non-charged phospholipid monolayer of 1,2-dipalmitoyl-phosphatidylethanolamine (DPPE) at the air–water interface via ionic bridges of calcium. This influences the lateral order of the lipid monolayer. The monolayer of DPPE on a Ca2+ subphase was studied by isotherm measurements, grazing incidence X-ray diffraction (GIXD) and ellipsometry before and after the injection of dextran sulfate into the subphase. The coupled system is more condensed. The phase sequence did not change after the polymer binding, but all transition pressures and tilt angles are lowered. Because of the bridging mechanism and the multiple charges of each dextran unit, the whole system responds very flexibly to pressure changes

    Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the bilayer

    Get PDF
    The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn2+, which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into β-sheet amyloid fibrils, whereas in the presence of Zn2+ it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn2+ does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an α-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn2+ is to promote this local helical structure in B18 and to prevent its inactivation as β-sheet fibril

    Investigation of phospholipid area compression induced by calcium-mediated dextran sulfate interaction.

    Get PDF
    The association of anionic polyelectrolytes such as dextran sulfate (DS) to zwitterionic phospholipid surfaces via Ca(2+) bridges results in a perturbation of lipid packing at physiologically relevant Ca(2+) concentrations. Lipid area compression was investigated in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar bilayer dispersions by (2)H-NMR and in monolayer studies. Binding of DS to DMPC surfaces via Ca(2+) results in denser lipid packing, as indicated by higher lipid chain order. DMPC order parameters are homogeneously increased throughout the lipid bilayer. Higher order translates into more extended hydrocarbon chains and decreased average lipid area per molecule. Area compression is reported as a function of DS concentration and molecular weight. Altering the NaCl and Ca(2+) concentrations modified electrostatic interactions between DS and phospholipid. A maximal area reduction of DeltaA = 2.7 A(2) per DMPC molecule is observed. The lipid main-phase transition temperature increases upon formation of DMPC/Ca(2+)/DS-complexes. Lipid area compression after addition of DS and Ca(2+) to the subphase was also observed in monolayer experiments. A decrease in surface tension of up to 3.5 mN/m at constant molecular area was observed. DS binds to the lipid headgroups by formation of Ca(2+) bridges without penetrating the hydrophobic region. We suggest that area compression is the result of an attractive electrostatic interaction between neighboring lipid molecules induced by high local Ca(2+) concentration due to the presence of DS. X-ray diffraction experiments demonstrate that DS binding to apposing bilayers reduces bilayer separation. We speculate that DS binding alters the phase state of low-density lipoproteins that associate with polyelectrolytes of the arterial connective tissue in the early stages of arteriosclerosis

    Activité calcique et communication paracrine avant synaptogenèse dans le développement du néocortex murin

    No full text
    Dans le néocortex murin, la division des cellules précurseurs a lieu dès le stade E11 et donne naissance aux premiers neurones pionniers dont les cellules de Cajal-Retzius. L'activité électrique spontanée, portée par les canaux ioniques, joue un rôle prépondérant dans le développement du système nerveux central. Comprendre la place des canaux ioniques et de la signalisation calcique dans les phases précoces de le neurogenèse était l'objectif principal de mon projet. Nous avons montré l'apparition précoce de canaux sodiques dépendants du voltage dans 55% des cellules neuronales à E13, dont les cellules de Cajal-Retzius. En parallèle, nous avons observé des activités calciques spontanées dans les cellules proliférantes et neuronales au même stade. La conception d'un logiciel d'imagerie nous a permis d'analyser statistiquement ces activités et d'identifier les canaux ioniques impliqués. Alors que les synapses ne sont pas encore formées, nous avons observé la mise en place d'activités synchrones au sein du néocortex et démontré l'existence de communications paracrines entre les cellules. De plus, nous avons identifié l'existence d'une cascade de signalisation où la dépolarisation des récepteurs glycinergiques active les canaux sodiques présents sur les neurones pionniers. Dans ces neurones, l'influx sodique entraîne une augmentation de calcium cytoplasmique via un échangeur Na+/Ca2+ puis une exocytose glutamatergique dont le libération paracrine induit l'activation d'autres cellules néocorticales. L'utilisation de la culture organotypique de cerveau nous a laissé entrevoir une implication physiologique majeure de cette cascade de signalisation dans la corticogenèse.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF
    corecore