1,785 research outputs found
Dnmt3b ablation impairs fracture repair through upregulation of Notch pathway
We previously established that DNA methyltransferase 3b (Dnmt3b) is the sole Dnmt responsive to fracture repair and that Dnmt3b expression is induced in progenitor cells during fracture repair. In the current study, we confirmed that Dnmt3b ablation in mesenchymal progenitor cells (MPCs) resulted in impaired endochondral ossification, delayed fracture repair, and reduced mechanical strength of the newly formed bone in Prx1-Cre;Dnmt3bf/f (Dnmt3bPrx1) mice. Mechanistically, deletion of Dnmt3b in MPCs led to reduced chondrogenic and osteogenic differentiation in vitro. We further identified Rbpjκ as a downstream target of Dnmt3b in MPCs. In fact, we located 2 Dnmt3b binding sites in the murine proximal Rbpjκ promoter and gene body and confirmed Dnmt3b interaction with the 2 binding sites by ChIP assays. Luciferase assays showed functional utilization of the Dnmt3b binding sites in murine C3H10T1/2 cells. Importantly, we showed that the MPC differentiation defect observed in Dnmt3b deficiency cells was due to the upregulation of Rbpjκ, evident by restored MPC differentiation upon Rbpjκ inhibition. Consistent with in vitro findings, Rbpjκ blockage via dual antiplatelet therapy reversed the differentiation defect and accelerated fracture repair in Dnmt3bPrx1 mice. Collectively, our data suggest that Dnmt3b suppresses Notch signaling during MPC differentiation and is necessary for normal fracture repair
Transport Properties in Ferromagnetic Josephson Junction between Triplet Superconductors
Charge and spin Josephson currents in a ballistic
superconductor-ferromagnet-superconductor junction with spin-triplet pairing
symmetry are studied using the quasiclassical Eilenberger equation. The gap
vector of superconductors has an arbitrary relative angle with respect to
magnetization of the ferromagnetic layer. We clarify the effects of the
thickness of ferromagnetic layer and magnitude of the magnetization on the
Josephson charge and spin currents. We find that 0-\pi transition can occur
except for the case that the exchange field and d-vector are in nearly
perpendicular configuration. We also show how spin current flows due to
misorientation between the exchange field and d-vector.Comment: 6 pages, 8 figure
Retrospective Investigation of Enteric Illnesses in Pet Animals
Recording and analysis of data are key elements to understand the epidemiology of various infectious and zoonotic diseases such as enteric pathogens and conditions. In this study, the clinical records of Alhelal Alazraq veterinary clinic in Tripoli were investigated for enteric diseases and illnesses in cats and dogs during the period of 2010–2015. The diagnostic and therapeutic guidelines within the Libyan veterinary system were also assessed and discussed based on the retrieved information and records. A total of 859 cases representing 528 (61%) from cats and 331 (39%) from dogs were retrieved and analysed using descriptive analysis. The cases were originated from five major areas from the center of Tripoli and the surrounding areas. Of these, 835/859 (97%) cases adopted antimicrobial based therapies and administered various antibiotic classes mainly and respectively using penicillin (652; 78%) and trimethoprim-sulfamethoxazole (229; 27%). The current study is the first retrospective investigation that analysed clinical and medical information from a major veterinary clinic in Libya. Diagnostic and therapeutic guidelines in the veterinary settings in Libya should be carefully reviewed and addressed. Retrospective studies and research programmes that monitor and investigate the occurrences of zoonotic and emerging pathogens particularly in relation to antimicrobial resistance are warranted in the Libyan health and medical system
Novel Fractional Wavelet Transform with Closed-Form Expression
yesA new wavelet transform (WT) is introduced based on the fractional properties of the traditional Fourier transform.
The new wavelet follows from the fractional Fourier order which uniquely identifies the representation of an input function in a fractional domain. It exploits the combined advantages of WT and fractional Fourier transform (FrFT). The transform permits the identification of a transformed function based on the fractional rotation in time-frequency plane. The fractional
rotation is then used to identify individual fractional daughter wavelets. This study is, for convenience, limited to one-dimension. Approach for discussing two or more dimensions is shown
ANURIA SECONDARY TO HOT WEATHER-INDUCED HYPERURICAEMIA: DIAGNOSIS AND MANAGEMENT
There is little information on the management of anuria secondary to severe
volume depletion or as a rare manifestation of heat stroke in areas of the world with very hot
summers. We present our experience with hot weather-induced hyperuricaemia in Kuwait
A Multi-Antenna Design Scheme based on Hadamard Matrices for Wireless Communications.
YesA quasi-orthogonal space time block coding (QO-STBC) scheme that exploits Hadamard matrix
properties is studied and evaluated. At first, an analytical solution is derived as an extension of
some earlier proposed QO-STBC scheme based on Hadamard matrices, called diagonalized
Hadamard space-time block coding (DHSBTC). It explores the ability of Hadamard matrices
that can translate into amplitude gains for a multi-antenna system, such as the QO-STBC
system, to eliminate some off-diagonal (interference) terms that limit the system performance
towards full diversity. This property is used in diagonalizing the decoding matrix of the QOSTBC
system without such interfering elements. Results obtained quite agree with the analytical
solution and also reflect the full diversity advantage of the proposed QO-STBC system design
scheme. Secondly, the study is extended over an interference-free QO-STBC multi-antenna
scheme, which does not include the interfering terms in the decoding matrix. Then, following
the Hadamard matrix property advantages, the gain obtained (for example, in 4x1 QO-STBC
scheme) in this study showed 4-times louder amplitude (gain) than the interference-free QOSTBC
and much louder than earlier DHSTBC for which the new approach is compared with
Cosmic Acceleration in Brans-Dicke Cosmology
We consider Brans-Dicke theory with a self-interacting potential in Einstein
conformal frame. We show that an accelerating expansion is possible in a
spatially flat universe for large values of the Brans-Dicke parameter
consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio
Simulations of galactic dynamos
We review our current understanding of galactic dynamo theory, paying
particular attention to numerical simulations both of the mean-field equations
and the original three-dimensional equations relevant to describing the
magnetic field evolution for a turbulent flow. We emphasize the theoretical
difficulties in explaining non-axisymmetric magnetic fields in galaxies and
discuss the observational basis for such results in terms of rotation measure
analysis. Next, we discuss nonlinear theory, the role of magnetic helicity
conservation and magnetic helicity fluxes. This leads to the possibility that
galactic magnetic fields may be bi-helical, with opposite signs of helicity and
large and small length scales. We discuss their observational signatures and
close by discussing the possibilities of explaining the origin of primordial
magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic
fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria
- …
