96,161 research outputs found
Reimann's "Habitual Hyperthermia" Responding to Hormone Therapy.
A 25-year-old woman presented with fever of unknown origin, exhibiting malaise and low-grade fevers in evenings. These fevers exhibited a pattern of starting mid-menstrual cycle with resolution around the onset of menses, matching a pattern of "habitual hyperthermia" reported by H. Reimann in the 1930s. Extensive workup was unremarkable, and the fevers improved on oral synthetic estrogen and progesterone therapy
Temperature dependence of electron-phonon interactions in vanadium
First-principles calculations were used to study the Fermi surface of body-centered cubic vanadium at elevated temperatures. Supercell calculations accounted for effects of thermal atom displacements on band energies, and band unfolding was used to project the spectral weight of the electron states into the Brillouin zone of a standard bcc unit cell. An electronic topological transition (ETT, or Lifshitz transition) occurred near the Î point with increasing temperature, but the large thermal smearings from the atomic disorder and the Fermi-Dirac distribution reduced the effect of this ETT on the electron-phonon interactions. The phonon dispersions showed thermal stiffening of their Kohn anomalies near the Î point and of the longitudinal N phonon mode. In general the effects of the ETT were overcome by the thermal smearing of the Fermi surface that reduces the spanning vector densities for anomalous phonon modes
A comparative analysis of the value of information in a continuous time market model with partial information: the cases of log-utility and CRRA
We study the question what value an agent in a generalized Black-Scholes model with partial information attributes to the complementary information. To do this, we study the utility maximization problems from terminal wealth for the two cases partial information and full information. We assume that the drift term of the risky asset is a dynamic process of general linear type and that the two levels of observation correspond to whether this drift term is observable or not. Applying methods from stochastic filtering theory we derive an analytical tractable formula for the value of information in the case of logarithmic utility. For the case of constant relative risk aversion (CRRA) we derive a semianalytical formula, which uses as an input the numerical solution of a system of ODEs. For both cases we present a comparative analysis
A stochastic multi-scale model of HIV-1 transmission for decision-making: application to a MSM population.
BackgroundIn the absence of an effective vaccine against HIV-1, the scientific community is presented with the challenge of developing alternative methods to curb its spread. Due to the complexity of the disease, however, our ability to predict the impact of various prevention and treatment strategies is limited. While ART has been widely accepted as the gold standard of modern care, its timing is debated.ObjectivesTo evaluate the impact of medical interventions at the level of individuals on the spread of infection across the whole population. Specifically, we investigate the impact of ART initiation timing on HIV-1 spread in an MSM (Men who have Sex with Men) population.Design and methodsA stochastic multi-scale model of HIV-1 transmission that integrates within a single framework the in-host cellular dynamics and their outcomes, patient health states, and sexual contact networks. The model captures disease state and progression within individuals, and allows for simulation of therapeutic strategies.ResultsEarly ART initiation may substantially affect disease spread through a population.ConclusionsOur model provides a multi-scale, systems-based approach to evaluate the broader implications of therapeutic strategies
Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications
Area spectral efficiency (ASE) was introduced as a metric to quantify the
spectral utilization efficiency of cellular systems. Unlike other performance
metrics, ASE takes into account the spatial property of cellular systems. In
this paper, we generalize the concept of ASE to study arbitrary wireless
transmissions. Specifically, we introduce the notion of affected area to
characterize the spatial property of arbitrary wireless transmissions. Based on
the definition of affected area, we define the performance metric, generalized
area spectral efficiency (GASE), to quantify the spatial spectral utilization
efficiency as well as the greenness of wireless transmissions. After
illustrating its evaluation for point-to-point transmission, we analyze the
GASE performance of several different transmission scenarios, including
dual-hop relay transmission, three-node cooperative relay transmission and
underlay cognitive radio transmission. We derive closed-form expressions for
the GASE metric of each transmission scenario under Rayleigh fading environment
whenever possible. Through mathematical analysis and numerical examples, we
show that the GASE metric provides a new perspective on the design and
optimization of wireless transmissions, especially on the transmitting power
selection. We also show that introducing relay nodes can greatly improve the
spatial utilization efficiency of wireless systems. We illustrate that the GASE
metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo
- âŠ