216 research outputs found

    Detection and quantification of Aβ−3–40 (APP669‐711) in cerebrospinal fluid

    Get PDF
    Neurochemical biomarkers can support the diagnosis of Alzheimer’s disease and may facilitate clinical trials. In blood plasma, the ratio of the amyloid-β (Aβ) peptides Aβ−3– 40/Aβ1–42 can predict cerebral amyloid-β pathology with high accuracy (Nakamura et al., 2018). Whether or not Aβ−3–40 (aka. amyloid precursor protein (APP) 669– 711) is also present in cerebrospinal fluid (CSF) is not clear. Here, we investigated whether Aβ−3–40 can be detected in CSF and to what extent the CSF Aβ−3–40/Aβ42 ratio is able to differentiate between individuals with or without amyloid-β positron emission tomography (PET) evidence of brain amyloid. The occurrence of Aβ−3–40 in human CSF was assessed by immunoprecipitation followed by mass spectrometry. For quantifying the CSF concentrations of Aβ−3–40 in 23 amyloid PET- negative and 17 amyloid PET- positive subjects, we applied a sandwich-type immunoassay. Our findings provide clear evidence of the presence of Aβ−3–40 and Aβ−3–38 in human CSF. While there was no statistically significant difference in the CSF concentration of Aβ−3–40 between the two diagnostic groups, the CSF Aβ−3–40/Aβ42 ratio was increased in the amyloid PET- positive individuals. We conclude that Aβ−3– 40 appears to be a regular constituent of CSF and may potentially serve to accentuate the selec- tive decrease in CSF Aβ42 in Alzheimer's disease

    Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases

    Get PDF
    The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate

    Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model

    Get PDF
    It is well established that only a fraction of Aβ peptides in the brain of Alzheimer’s disease (AD) patients start with N-terminal aspartate (Aβ1D) which is generated by proteolytic processing of amyloid precursor protein (APP) by BACE. N-terminally truncated and pyroglutamate modified Aβ starting at position 3 and ending with amino acid 42 [Aβ3(pE)–42] have been previously shown to represent a major species in the brain of AD patients. When compared with Aβ1–42, this peptide has stronger aggregation propensity and increased toxicity in vitro. Although it is unknown which peptidases remove the first two N-terminal amino acids, the cyclization of Aβ at N-terminal glutamate can be catalyzed in vitro. Here, we show that Aβ3(pE)–42 induces neurodegeneration and concomitant neurological deficits in a novel mouse model (TBA2 transgenic mice). Although TBA2 transgenic mice exhibit a strong neuronal expression of Aβ3–42 predominantly in hippocampus and cerebellum, few plaques were found in the cortex, cerebellum, brain stem and thalamus. The levels of converted Aβ3(pE)-42 in TBA2 mice were comparable to the APP/PS1KI mouse model with robust neuron loss and associated behavioral deficits. Eight weeks after birth TBA2 mice developed massive neurological impairments together with abundant loss of Purkinje cells. Although the TBA2 model lacks important AD-typical neuropathological features like tangles and hippocampal degeneration, it clearly demonstrates that intraneuronal Aβ3(pE)–42 is neurotoxic in vivo

    Mol Cell Proteomics

    Get PDF
    Protein biochips have a great potential in future parallel processing of complex samples as a research tool and in diagnostics. For the generation of protein biochips, highly automated technologies have been developed for cDNA expression library production, high throughput protein expression, large scale analysis of proteins, and protein microarray generation. Using this technology, we present here a strategy to identify potential autoantigens involved in the pathogenesis of alopecia areata, an often chronic disease leading to the rapid loss of scalp hair. Only little is known about the putative autoantigen(s) involved in this process. By combining protein microarray technology with the use of large cDNA expression libraries, we profiled the autoantibody repertoire of sera from alopecia areata patients against a human protein array consisting of 37,200 redundant, recombinant human proteins. The data sets obtained from incubations with patient sera were compared with control sera from clinically healthy persons and to background incubations with anti-human IgG antibodies. From these results, a smaller protein subset was generated and subjected to qualitative and quantitative validation on highly sensitive protein microarrays to identify novel alopecia areata-associated autoantigens. Eight autoantigens were identified by protein chip technology and were successfully confirmed by Western blot analysis. These autoantigens were arrayed on protein microarrays to generate a disease-associated protein chip. To confirm the specificity of the results obtained, sera from patients with psoriasis or hand and foot eczema as well as skin allergy were additionally examined on the disease-associated protein chip. By using alopecia areata as a model for an autoimmune disease, our investigations show that the protein microarray technology has potential for the identification and evaluation of autoantigens as well as in diagnosis such as to differentiate alopecia areata from other skin diseases

    Accumulation of intraneuronal Aβ correlates with ApoE4 genotype

    Get PDF
    In contrast to extracellular plaque and intracellular tangle pathology, the presence and relevance of intraneuronal Aβ in Alzheimer’s disease (AD) is still a matter of debate. Human brain tissue offers technical challenges such as post-mortem delay and uneven or prolonged tissue fixation that might affect immunohistochemical staining. In addition, previous studies on intracellular Aβ accumulation in human brain often used antibodies targeting the C-terminus of Aβ and differed strongly in the pretreatments used. To overcome these inconsistencies, we performed extensive parametrical testing using a highly specific N-terminal Aβ antibody detecting the aspartate at position 1, before developing an optimal staining protocol for intraneuronal Aβ detection in paraffin-embedded sections from AD patients. To rule out that this antibody also detects the β-cleaved APP C-terminal fragment (β-CTF, C99) bearing the same epitope, paraffin-sections of transgenic mice overexpressing the C99-fragment were stained without any evidence for cross-reactivity in our staining protocol. The staining intensity of intraneuronal Aβ in cortex and hippocampal tissue of 10 controls and 20 sporadic AD cases was then correlated to patient data including sex, Braak stage, plaque load, and apolipoprotein E (ApoE) genotype. In particular, the presence of one or two ApoE4 alleles strongly correlated with an increased accumulation of intraneuronal Aβ peptides. Given that ApoE4 is a major genetic risk factor for AD and is involved in neuronal cholesterol transport, it is tempting to speculate that perturbed intracellular trafficking is involved in the increased intraneuronal Aβ aggregation in AD

    Increased Dickkopf-1 expression in breast cancer bone metastases

    Get PDF
    The aim of this study was to determine whether Dickkopf-1 (Dkk-1) expression in breast cancer was associated with bone metastases. We first analysed Dkk-1 expression by human breast cancer cell lines that induce osteolytic or osteoblastic lesions in animals. Dickkopf-1 levels were then measured in the bone marrow aspirates of hind limbs from eight NMRI mice inoculated with breast cancer cells that induced bone metastases and 11 age-matched non-inoculated control animals. Finally, Dkk-1 was measured in the serum of 17 women with breast cancer in complete remission, 19 women with breast cancer and bone metastases, 16 women with breast cancer and metastases at non-bone sites and 16 healthy women. Only breast cancer cells that induce osteolytic lesions in animals produced Dkk-1. There was a six-fold increase in Dkk-1 levels in the bone marrow from animals inoculated with MDA-B02 cells when compared with that of control non-inoculated animals (P=0.003). Median Dkk-1 levels in the serum of patients with breast cancer and bone metastases were significantly higher than levels of patients in complete remission (P=0.016), patients with breast cancer having metastases at non-bone sites (P<0.0001) and healthy women (P=0.047), although there was a large overlap in individual levels between the different groups. In conclusion, Dkk-1 is secreted by osteolytic human breast cancer cells lines and increased circulating levels are associated with the presence of bone metastases in patients with breast cancer. Measurements of circulating Dkk-1 levels may be useful for the clinical investigation of patients with breast cancer and bone metastases

    Invloed van de koolzuur- en zuurstofspanning op enkele uiterlijke kenmerken, groeiverschijnselen, lage temperatuur bederf en ademhaling van witlofkroppen

    Get PDF
    N-truncated Aβ(4-42) is highly abundant in Alzheimer disease (AD) brain and was the first Aβ peptide discovered in AD plaques. However, a possible role in AD aetiology has largely been neglected. In the present report, we demonstrate that Aβ(4-42) rapidly forms aggregates possessing a high aggregation propensity in terms of monomer consumption and oligomer formation. Short-term treatment of primary cortical neurons indicated that Aβ(4-42) is as toxic as pyroglutamate Aβ(3-42) and Aβ(1-42). In line with these findings, treatment of wildtype mice using intraventricular Aβ injection induced significant working memory deficits with Aβ(4-42), pyroglutamate Aβ(3-42) and Aβ(1-42). Transgenic mice expressing Aβ(4-42) (Tg4-42 transgenic line) developed a massive CA1 pyramidal neuron loss in the hippocampus. The hippocampus-specific expression of Aβ(4-42) correlates well with age-dependent spatial reference memory deficits assessed by the Morris water maze test. Our findings indicate that N-truncated Aβ(4-42) triggers acute and long-lasting behavioral deficits comparable to AD typical memory dysfunction

    Distinct Temporal and Anatomical Distributions of Amyloid-β and Tau Abnormalities following Controlled Cortical Impact in Transgenic Mice

    Get PDF
    Traumatic brain injury (TBI) is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI) of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic TauP301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting

    Aβ Peptide Fibrillar Architectures Controlled by Conformational Constraints of the Monomer

    Get PDF
    Anomalous self-assembly of the Aβ peptide into fibrillar amyloid deposits is strongly correlated with the development of Alzheimer's disease. Aβ fibril extension follows a template guided “dock and lock” mechanism where polymerisation is catalysed by the fibrillar ends. Using surface plasmon resonance (SPR) and quenched hydrogen-deuterium exchange NMR (H/D-exchange NMR), we have analysed the fibrillar structure and polymerisation properties of both the highly aggregation prone Aβ1–40 Glu22Gly (Aβ40Arc) and wild type Aβ1–40 (Aβ40WT). The solvent protection patterns from H/D exchange experiments suggest very similar structures of the fibrillar forms. However, through cross-seeding experiments monitored by SPR, we found that the monomeric form of Aβ40WT is significantly impaired to acquire the fibrillar architecture of Aβ40Arc. A detailed characterisation demonstrated that Aβ40WT has a restricted ability to dock and isomerise with high binding affinity onto Aβ40Arc fibrils. These results have general implications for the process of fibril assembly, where the rate of polymerisation, and consequently the architecture of the formed fibrils, is restricted by conformational constraints of the monomers. Interestingly, we also found that the kinetic rate of fibril formation rather than the thermodynamically lowest energy state determines the overall fibrillar structure
    corecore