11 research outputs found

    Assessment of dosimetric errors induced by deformable image registration methods in 4D pencil beam scanned proton treatment planning for liver tumours

    Get PDF
    PURPOSE: Respiratory impacts in pencil beam scanned proton therapy (PBS-PT) are accounted by extensive 4D dose calculations, where deformable image registration (DIR) is necessary for estimating deformation vector fields (DVFs). We aim here to evaluate the dosimetric errors induced by different DIR algorithms in their resulting 4D dose calculations by using ground truth(GT)-DVFs from 4DMRI. MATERIALS AND METHODS: Six DIR methods: ANACONDA, Morfeus, B-splines, Demons, CT Deformable, and Total Variation, were respectively applied to nine 4DCT-MRI liver data sets. The derived DVFs were then used as input for 4D dose calculation. The DIR induced dosimetric error was assessed by individually comparing the resultant 4D dose distributions to those obtained with GT-DVFs. Both single-/three-field plans and single/rescanned strategies were investigated. RESULTS: Differences in 4D dose distributions among different DIR algorithms, and compared to the results using GT-DVFs, were pronounced. Up to 40 % of clinically relevant dose calculation points showed dose differences of 10 % or more between the GT. Differences in V95(CTV) reached up to 11.34 ± 12.57 %. The dosimetric errors became in general less substantial when applying multiple-field plans or using rescanning. CONCLUSION: Intrinsic geometric errors by DIR can influence the clinical evaluation of liver 4D PBS-PT plans. We recommend the use of an error bar for correctly interpreting individual 4D dose distributions

    Improving hybrid image and structure-based deformable image registration for large internal deformations

    No full text
    Objective. Deformable image registration (DIR) is a widely used technique in radiotherapy. Complex deformations, resulting from large anatomical changes, are a regular challenge. DIR algorithms generally seek a balance between capturing large deformations and preserving a smooth deformation vector field (DVF). We propose a novel structure-based term that can enhance the registration efficacy while ensuring a smooth DVF. Approach. The proposed novel similarity metric for controlling structures was introduced as a new term into a commercially available algorithm. Its performance was compared to the original algorithm using a dataset of 46 patients who received pelvic re-irradiation, many of which exhibited complex deformations. Main results. The mean Dice Similarity Coefficient (DSC) under the improved algorithm was 0.96, 0.94, 0.76, and 0.91 for bladder, rectum, colon, and bone respectively, compared to 0.69, 0.89, 0.62, and 0.88 for the original algorithm. The improvement was more pronounced for complex deformations. Significance. With this work, we have demonstrated that the proposed term is able to improve registration accuracy for complex cases while maintaining realistic deformations
    corecore