22 research outputs found

    Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Macrophomina phaseolina </it>is an emerging and devastating fungal pathogen that causes significant losses in crop production under high temperatures and drought stress. An increasing number of disease incidence reports highlight the wide prevalence of the pathogen around the world and its contribution toward crop yield suppression. In cowpea [<it>Vigna unguiculata </it>(L) Walp.], limited sources of low-level host resistance have been identified, the genetic basis of which is unknown. In this study we report on the identification of strong sources of host resistance to <it>M. phaseolina </it>and the genetic mapping of putative resistance loci on a cowpea genetic map comprised of gene-derived single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs).</p> <p>Results</p> <p>Nine quantitative trait loci (QTLs), accounting for between 6.1 and 40.0% of the phenotypic variance (R<sup>2</sup>), were identified using plant mortality data taken over three years in field experiments and disease severity scores taken from two greenhouse experiments. Based on annotated genic SNPs as well as synteny with soybean (<it>Glycine max</it>) and <it>Medicago truncatula</it>, candidate resistance genes were found within mapped QTL intervals. QTL <it>Mac-2 </it>explained the largest percent R<sup>2 </sup>and was identified in three field and one greenhouse experiments where the QTL peak co-located with a SNP marker derived from a pectin esterase inhibitor encoding gene. Maturity effects on the expression of resistance were indicated by the co-location of <it>Mac-6 </it>and <it>Mac-7 </it>QTLs with maturity-related senescence QTLs <it>Mat-2 </it>and <it>Mat-1</it>, respectively. Homologs of the <it>ELF4 </it>and <it>FLK </it>flowering genes were found in corresponding syntenic soybean regions. Only three <it>Macrophomina </it>resistance QTLs co-located with delayed drought-induced premature senescence QTLs previously mapped in the same population, suggesting that largely different genetic mechanisms mediate cowpea response to drought stress and <it>Macrophomina </it>infection.</p> <p>Conclusion</p> <p>Effective sources of host resistance were identified in this study. QTL mapping and synteny analysis identified genomic loci harboring resistance factors and revealed candidate genes with potential for further functional genomics analysis.</p

    Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity

    No full text
    International audienceBotrytis cinerea is a necrotrophic pathogen that attacks more than 200 plant species.Here, the nonpathogenic mutant A336, obtained via insertional mutagenesis, was characterized.Mutant A336 was nonpathogenic on leaves and fruits, on intact and wounded tissue, while still able to penetrate the host plant. It grew normally in vitro on rich media but its conidiation pattern was altered. The mutant did not produce oxalic acid and exhibited a modified regulation of the production of some secreted proteins (acid protease 1 and endopolygalacturonase 1). Culture filtrates of the mutant triggered an important oxidative burst in grapevine ( Vitis vinifera ) suspension cells, and the mutant–plant interaction resulted in the formation of hypersensitive response-like necrosis. Genetic segregation analyses revealed that the pathogenicity phenotype was linked to a single locus, but showed that the mutated gene was not tagged by the plasmid pAN7-1.Mutant A336 is the first oxalate-deficient mutant to be described in B. cinerea and it differs from all the nonpathogenic B. cinerea mutants described to date
    corecore