1,447 research outputs found

    Intermittent Attractive Interactions Lead to Microphase Separation in Non-motile Active Matter

    Get PDF
    Non-motile active matter exhibits a wide range of non-equilibrium collective phenomena yet examples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria {\it Neisseria Meningitidis} in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining the {\it Active Model B+} class. In particular, we confirm the presence of microphase separation by solving the kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation mechanism tuning the typical cluster size, e.g. in populations of bacteria interacting via type IV pili.Comment: 7 pages (4 figures) of main text plus 12 pages (2 figures) of supplementary informatio

    Quantum nonlinear optics using cold Rydberg atoms

    Get PDF
    Although photons do no a ect each other in vacuum, interactions between individual photons could enable a wide variety of scienti c and engineering applications. Here we report on the creation of a quantum nonlinear medium with large photon-photon interactions at the single photon level. Our approach relies on Electromagnetically Induced Transparency (EIT) techniques, in which individual photons are coherently mapped onto strongly interacting Rydberg atoms. Under EIT conditions, photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons, which experience long-range interactions through the Rydberg blockade. In particular, we demonstrate coherent photon-photon interactions, akin to those associated with conventional massive particles, paving the way for novel photonics states and quantum simulation with light

    Thinning mechanisms of heterogeneous continental lithosphere

    Get PDF
    The mechanisms responsible for the formation of extremely thinned continental crust (<10 km thick) and lithosphere during rifting remains debated. Observations from present-day and fossil passive margins highlight the role of deep-seated deformation, likely controlled by heterogeneities within the continental lithosphere, such as changing lithologies, mechanical anisotropies and inherited structures. We investigate the mechanisms of lithospheric thinning by exploring the role of pre-existing heterogeneities on the architecture and evolution of rifted margins. We estimate pre-rift pressure conditions (P0) vs. depth diagrams of crustal to lithospheric sections, to quantify rift-related modifications on inherited lithostatic pressure gradients. Two field examples from the Alpine Tethys margins in the Eastern and Southern Alps (SE Switzerland and N Italy) were selected to characterize: (1) the pre-rift architecture of the continental lithosphere; (2) the localization of rift-related deformation in distinct portions of the lithosphere; and (3) the interaction between pre-existing heterogeneities of the lithosphere and rift-related structures. These observations are compared with high-resolution, two-dimensional thermo-mechanical numerical models. The design of the models takes into account pre-existing mechanical heterogeneities representing the initial pre-rift architecture of the continental lithosphere. Extensional structures consist of high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. Such structures accommodate the lateral extraction of mechanically stronger levels derived from the middle to lower crust. As a result, the extremely thinned continental crust in Tethyan passive margins represents the juxtaposition and amalgamation of distinct strong levels of the crust separated by major extensional structures identified by sharp pressure gradients. Future work should determine the applicability of these results to other present-day and fossil rifted margins

    Novel Calcium-Related Targets of Insulin in Hippocampal Neurons

    Get PDF
    Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer\u27s disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic

    Neuronal Calcium Imaging, Excitability, and Plasticity Changes in the \u3cem\u3eAldh2\u3c/em\u3e\u3csup\u3e-/-\u3c/sup\u3e Mouse Model of Sporadic Alzheimer\u27s Disease

    Get PDF
    BACKGROUND: Dysregulated signaling in neurons and astrocytes participates in pathophysiological alterations seen in the Alzheimer\u27s disease brain, including increases in amyloid-β, hyperphosphorylated tau, inflammation, calcium dysregulation, and oxidative stress. These are often noted prior to the development of behavioral, cognitive, and non-cognitive deficits. However, the extent to which these pathological changes function together or independently is unclear. OBJECTIVE: Little is known about the temporal relationship between calcium dysregulation and oxidative stress, as some reports suggest that dysregulated calcium promotes increased formation of reactive oxygen species, while others support the opposite. Prior work has quantified several key outcome measures associated with oxidative stress in aldehyde dehydrogenase 2 knockout (Aldh2-/-) mice, a non-transgenic model of sporadic Alzheimer\u27s disease. METHODS: Here, we tested the hypothesis that early oxidative stress can promote calcium dysregulation across aging by measuring calcium-dependent processes using electrophysiological and imaging methods and focusing on the afterhyperpolarization (AHP), synaptic activation, somatic calcium, and long-term potentiation in the Aldh2-/- mouse. RESULTS: Our results show a significant age-related decrease in the AHP along with an increase in the slow AHP amplitude in Aldh2-/- animals. Measures of synaptic excitability were unaltered, although significant reductions in long-term potentiation maintenance were noted in the Aldh2-/- animals compared to wild-type. CONCLUSION: With so few changes in calcium and calcium-dependent processes in an animal model that shows significant increases in HNE adducts, Aβ, p-tau, and activated caspases across age, the current findings do not support a direct link between neuronal calcium dysregulation and uncontrolled oxidative stress

    Potential use of mid-infrared spectrometry to predict cheese yield from milk and to study its genetic variability

    Full text link
    peer reviewedFournir une indication rapide, fiable et bon marché du rendement fromager pour un lait donné, sans devoir appliquer des formules (empiriques ou théoriques) à partir des concentrations préalablement déterminées pour différents constituants du lait, serait un outil utile et économiquement intéressant tant pour les éleveurs que pour l’industrie laitière. En vue d’étudier la variabilité génétique du rendement fromager à l’échelle du cheptel bovin wallon, des méthodes chimiométriques ont été utilisées afin de développer des équations de prédictions basées sur des spectres moyen infrarouge (MIR) pour les rendements fromagers déterminés en laboratoire et exprimés en frais (RdFF) ou en sec (RdFS). Ceux-ci ont été déterminés sur 258 échantillons de lait analysés en spectrométrie MIR. Les équations de prédiction à partir du spectre MIR du lait ont été développées en utilisant la régression des moindres carrés partiels (PLS) avec une validation croisée interne appliquée sur la dérivée première des spectres MIR. Les coefficients de détermination de validation croisée (R²cv) des équations étaient de 0,81 pour les prédictions du RdFF et de 0,82 pour les celles du RdFS. Les rapports des performances sur les variabilités (RPD) étaient égaux à 2,3. Ces résultats peuvent permettre d’envisager une bonne utilité pratique pour leur prédiction respective, notamment dans le cadre de recherches génétiques. Ces équations ont été appliquées sur la base de données spectrales générée dans le cadre du contrôle laitier wallon. Les composantes de la variance ont été estimées séparément pour le RdFF et le RdFS basées sur un modèle animal « contrôles élémentaires » utilisant des régressions aléatoires. Le jeu de données utilisé comportait 51 537 prédictions pour 7 870 vaches primipares Holstein. Les héritabilités journalières moyennes variaient entre 0,31 (au 5ème jour de lactation (JDL)) et 0,59 (au 279ème JDL) pour le RdFF et entre 0,31 (au 5ème JDL) et 0,57 (au 299ème JDL) pour le RdFS. Ces héritabilités journalières modérées à élevées ont indiqué le potentiel de sélection génétique pour ces deux caractères.ProFARMilk, BlueSe

    Theoretical Aspects of the Equivalence Principle

    Full text link
    We review several theoretical aspects of the Equivalence Principle (EP). We emphasize the unsatisfactory fact that the EP maintains the absolute character of the coupling constants of physics while General Relativity, and its generalizations (Kaluza-Klein,..., String Theory), suggest that all absolute structures should be replaced by dynamical entities. We discuss the EP-violation phenomenology of dilaton-like models, which is likely to be dominated by the linear superposition of two effects: a signal proportional to the nuclear Coulomb energy, related to the variation of the fine-structure constant, and a signal proportional to the surface nuclear binding energy, related to the variation of the light quark masses. We recall the various theoretical arguments (including a recently proposed anthropic argument) suggesting that the EP be violated at a small, but not unmeasurably small level. This motivates the need for improved tests of the EP. These tests are probing new territories in physics that are related to deep, and mysterious, issues in fundamental physics.Comment: 21 pages, no figures; submitted to a "focus issue" of Classical and Quantum Gravity on Tests of the Weak Equivalence Principle, organized by Clive Speake and Clifford Wil

    Testing the equivalence principle: why and how?

    Full text link
    Part of the theoretical motivation for improving the present level of testing of the equivalence principle is reviewed. The general rationale for optimizing the choice of pairs of materials to be tested is presented. One introduces a simplified rationale based on a trichotomy of competing classes of theoretical models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra

    Shell Model Study of the Neutron-Rich Nuclei around N=28

    Get PDF
    We describe the properties of the neutron rich nuclei around N=28 in the shell mode framework. The valence space comprises the sdsd shell for protons an the pfpf shell for neutrons without any restriction. Good agreement is found with the available experimental data. The N=28 shell closure, even if eroded due to the large neutron excess, persists. The calculations predict that 40^{40}S and 42^{42}S are deformed with β=0.29\beta=0.29 and β=0.32\beta=0.32 respectively.Comment: 17 pages and 19 figures, LateX, RevTe
    • …
    corecore