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Non-motile active matter exhibits a wide range of non-equilibrium collective phenomena yet exam-
ples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria
Neisseria Meningitidis in which diffusive agents feel intermittent attractive forces. Through a formal
coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-
reversal-symmetry breaking terms defining the Active Model B+ class. In particular, we confirm
the presence of microphase separation by solving the kinetic equations numerically. We show that
the switching rate controlling the interactions provides a regulation mechanism tuning the typical
cluster size, e.g. in populations of bacteria interacting via type IV pili.

All matter is built up from smaller components, ac-
tive matter is no different. Often of biological inspira-
tion, active matter generically denotes systems of parti-
cles which consume energy from their surroundings [1, 2].
While this continuous consumption of energy leads to
the breaking of time-reversal symmetry (TRS) at the mi-
croscopic scale and thus maintains active systems out of
equilibrium, striking non-equilibrium features generically
stem from interactions between active particles or with
their environment [3–5]. For instance, dense suspensions
of interacting self-propelled particles display a wealth
of phenomena forbidden by equilibrium thermodynamics
including long-range order [6–10], clustering [11–14] or
phase separation even in the absence of attractive inter-
actions (e.g. motility induced phase separation) [15–21].
Connecting emergent structures and collective dynamics
to the behavior of individual particles through coarse-
graining techniques remains an open problem which has
seen recent development [22–26].

Equilibrium phase separation remains one of the sim-
plest examples of order emerging from disorder, charac-
terized by the spontaneous formation of regions with con-
trasting characteristics within a system. The dynamics of
phase separation in a passive binary fluid are captured by
Halperin and Hohenberg’s Model B [27] which describes
the evolution of a conserved scalar order parameter in a
system respecting time reversal symmetry (TRS) [28–31].
Model B itself can be derived from Dynamical Density
Functional Theory — central to the analysis of passive,
soft matter systems [32, 33].

In contrast, recent works have focused on field theories
capturing the TRS breaking present in active systems.
Using a top-down approach, TRS violating terms can be
added to Model B equations to form a mean-field the-
ory for motility induced phase separation leading to the
so-called Active Model B [34]. Interestingly, the addition
in this active field theory of further terms (of the same

order in the expansion in the order parameter) leads to a
non-equilibrium field theory, Active Model B+ (AMB+),
which has been shown numerically and analytically to
display microphase separation, driven by a reverse Ost-
wald ripening (ROR) process [35, 36]. The suppression
of Ostwald ripening was also discussed in the context of
coarse-grained models of active emulsions used to study
phase separation in systems driven out-of-equilibrium,
e.g. by chemical reactions [37–40].

In many-body physics, complex and robust collec-
tive behaviors can be the result of interactions be-
tween very simple constituent agents. While previous
coarse-graining approaches have successfully produced
the AMB+ equation, these bottom-up approaches have
focused on motile active matter — by far the most stud-
ied class of active systems. In contrast, minimal models
of non-motile — and in a sense truly scalar — active mat-
ter are crucially lacking in the literature, although they
offer further examples of the non-equilibrium phenomena
present in biological systems. Breaking from the motile
active matter paradigm, we introduce in this Letter a
minimal microscopic model of particles whose interac-
tions are governed by an active stochastic process.

Active switching was previously introduced in micro-
scopic models to generate particle shape changes [41],
define the particle-particle interactions [42–44] or parti-
cles interactions with an external field [45]. Our model is
inspired by the bacterium Neisseria Meningitidis which
interacts with its neighbours and environment through
type IV pili, hair-like appendages whose contraction gen-
erates pulling forces [42, 46]. In isolation, the bacterium
extends and retracts its pili over time. Upon prolifer-
ation, the pili of neighbouring bacteria touch; following
contact, their retraction pulls pairs of bacteria together,
eventually leading to bacterial clustering.

Recently, the mechanical properties of bacterial aggre-
gates were explored using experiments and phenomeno-
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logical continuum models [46–48]. In contrast, we de-
scribe minimally the pili interaction and introduce a
model in which particles stochastically switch between
attractive and purely repulsive states. We argue that
this effective description loses none of the fundamen-
tal physics but allows for significant analytical progress.
While the symmetries of our microscopic model are con-
sistent with Active Model B and B+, a formal coarse-
graining is required to conclude. We derive a density
equation which we show is of AMB+ form by identify-
ing the TRS breaking terms [35, 36]. Finally, we confirm
the presence of microphase separation and reverse Ost-
wald Ripening as predicted by the field theory by solving
the kinetic equations numerically and compare these re-
sults to direct numerical simulations of the microscopic
model, fully characterising the non-equilibrium structure
displayed by the system.

Microscopic model — We consider a system of N par-
ticles characterised by their position ri and an inter-
nal variable εi ∈ {0, 1} defining their interactions. Any
two particles interact through steric repulsion when their
center-to-center distance is such that |ri−rj | = rij < σ∗,
independently of the value of εi and εj . If the internal
variables of both agents are such that εi = εj = 1, these
particles are additionally subjected to an attractive force
with longer range σc > σ∗ (see Fig. 1(a)). We refer to the
case where εi = 1 (resp., εi = 0) as the on state (resp.,
the off state). We can define the total pair interaction
potential as the superposition of purely repulsive U0 and
purely attractive U1 contributions (see Fig. 1(b)):

U(rij , εiεj) = U0(rij) + εiεjU1(rij). (1)

The motion of the particles is governed by the over-
damped Langevin equation

ṙi = − 1

γ

∑

j 6=i

∇riU(rij , εiεj) +
√

2Dηi, (2)

where γ is a friction coefficient, D is the bare-diffusion
coefficient which sets the temperature in the system and
ηi is a zero mean, unit variance Gaussian white noise.

We introduce activity by allowing the particles to
stochastically switch between the on and off states with
constant rates, generically leading to intermittent attrac-
tive forces (Fig. 1(a)). Formally, the internal variables
{εi}i∈[1,N ] follow independent telegraph processes [49]
with switching rates kon and koff (see [50] for details).

Microscopic simulations — First, we numerically solve
the equation of motion [21, 52]. The interaction poten-
tials U0 and U1 are defined following the WCA decom-
position [50, 51]. We believe our results to be insensitive
to the exact choice of potential. To ensure that the sys-
tem exhibits liquid-gas phase separation with no active
switching, we work in the limit ε � kBT . Here, we re-
strict our focus to the case where kon = koff = k. We non-
dimensionalize the switching rate setting κ = kσ2/D,
where σ is the nominal particle diameter.

FIG. 1. Schematic of Microscopic Interactions. (a) The state
of particle i is set by its internal variable, εi, which switches
between 0 and 1 with fixed rates, kon and koff . The pair
potential for neighboring particles depends on the product
εiεj . (b) Pair potentials used in the simulations for εiεj = 0
(red) and εiεj = 1 (green). A WCA potential sets the particle
size σ∗ and the attraction range is set to σc = 2σ∗ [50].

As we vary the switching rate between 10−2 ≤ κ ≤ 102,
we investigate the emergence of macroscopic structures
(Fig. 2). At large switching rates κ� 1, the system fully
phase separates and displays a single macroscopic drop
as can be seen on Fig. 2(f)-(g); this is evidenced by a low
radius of gyration Rgyr for κ ≥ 10 as well as a maximal
cluster size smax approaching the system size. Further,
we observe that the stable drop is fully mixed with a
demixing index Idemix ≈ 0.5, defined as the fraction of
neighboring particles in the same state [50]. For κ �
1, the diffusion timescale is much larger than the time
between switching events; agents do not have time to
diffuse out of reach of the central drop before switching
on and being pulled back.

As the switching rate decreases, both radius of gyra-
tion and demixing index monotonically increase. At low
switching rates, the system does not reach full phase sep-
aration; instead, we argue that at intermediate switching
rates our model exhibits microphase separation, where
the system supports the coexistence of a large number of
small clusters (Fig. 2(e)). We conclude that the system
demixes and self-organizes into clusters of on particles
surrounded by a gas of off particles. The maximal cluster
size reaches a minimum when κ ≈ 1 and increases again
as we lower κ. Liquid-gas phase separation and demix-
ing are strengthened as κ decreases. Indeed, longer times
between switching events allow the nucleated clusters of
attractive particles to grow further. In the singular limit
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FIG. 2. Emergent Structures in Active Switching System. (a)
Radius of gyration Rgyr, (b) demixing index Idemix and (c)
maximal cluster size smax for switching rates κ ∈ [10−2, 102]
and ε� kBT . Representative configurations obtained in sim-
ulations at steady-state for (d) κ = 0, (e) κ = 10−2, (f)
κ = 10, and (g) κ = 100.

where κ = 0, we observe a fully demixed state displaying
a stable single drop of on particles surrounded by a diffu-
sive gas of off particles. In the limit ε� kBT , the initial
fraction of on particles controls the size of this drop as
strong attraction ensures that on particles remain in the
condensed phase.

Kinetic equations — Starting from a many-body
Smoluchowski equation and solving the subsequent
BBGKY hierarchy, we explicitly coarse-grain our micro-
scopic model (see details in SM [50]). Such a derivation is
often omitted for active switching systems, instead these
kinetic equations form the basis of the Reaction-Diffusion
DFT (R-DDFT) framework [32, 41, 43, 45, 53].

At a macroscopic level, we find that the state of our
system is described by the density fields ρ0(r, t) and
ρ1(r, t) for the off and on particles, respectively, which

are governed by the following kinetic equations

∂tρ0(r, t) = ∇ · J0 + s(ρ0, ρ1) (3a)

∂tρ1(r, t) = ∇ · J1 − s(ρ0, ρ1) (3b)

where the effect of the active switching is entirely con-
tained in the coupling term s(ρ0, ρ1) = k(ρ1 − ρ0). Self-
diffusion and particle-particle interactions are expressed
through the fluxes:

J0 = D∇ρ0 + ρ0∇µrep

(
ρ
)

(4a)

J1 = D∇ρ1 + ρ1∇µrep

(
ρ
)

+
1

2
ρ1∇

(
U1 ? ρ1

)
(4b)

where ρ(r, t) = ρ0(r, t)+ρ1(r, t) is the total particle den-
sity. We note that although both on and off particles
are subject to steric interactions, only on particles are
subject to attractive interactions (last term in Eq. (4b)).

Interestingly, we note that in the case where k = 0,
equations (3) and (4) describe two classical equilibrium
systems: a hard-sphere gas and a phase-separating Cahn-
Hilliard-type fluid. Our results so far show that by
coupling these two fluids, the resulting system can ex-
hibit fundamentally non-equilibrium phase separation
behaviours, including microphase separation. While this
has been hinted at in previous studies of Active Emul-
sions using phenomenological continuum models [37–40],
we here derive a closed equation for ρ(r, t) and show for-
mally that it pertains to the AMB+ class.

Closed Equation for Agent Density — Starting from
Eq. (3), we write an equation for the total density of par-
ticles

∂tρ(r, t) = ∇ ·
[
ρ(r)∇

(
δF [ρ(r)]

δρ(r)

)
+

1

2
ρ1(r)∇

(
U1 ? ρ1

)]

(5)
where although one cannot generically write a free energy
functional for active systems, we follow a common nota-
tion in field theories of active phase separation [34–36]
and write the passive terms in our density equation as
the gradient of the functional derivative of a free energy-
like functional

F [ρ(r)] =

∫
dr
[
Dρ(r)

[
log(ρ(r))− 1

]
+ frep(ρ(r))

]
. (6)

The terms in this functional represent the local den-
sity approximations for the so-called ideal gas contribu-
tion and the contribution due to repulsive interactions.
The attractive contribution, which contains implicitly the
activity, contributes in (5) the necessary terms for our
model to be of AMB+ form [35].

To show this, we first write Eq. (5) in closed form. The
density of on particles is related to the density of all par-
ticles via ρ1(r) = P(ε = 1|ρ(r) = ρb) × ρ(r), where this
conditional probability can be seen as the fraction of par-
ticles in a region of bulk density, ρ ≡ ρb with internal
variable ε = 1. We argue that this conditional proba-
bility is a function of the switching rate and the local
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FIG. 3. Measuring Sκ(ρ) numerically for non-dimensional
switching rates κ ∈ [10−2, 102]. Shape function Sκ(ρ) mea-
sured from simulations of the microscopic model as the frac-
tion of on agents in circular regions of radius σc with number
of agents per unit area ρ.

total density. We write ρ1(r) = Sk(ρ)ρ(r); we measure
Sk(ρ) numerically in the simulations of our microscopic
model for a wide range of switching rates as shown in
Fig. 3. Here, we made a local density approximation and
implicitly assume that the shape function Sk(ρ) does not
depend on the gradient of the density field [29].

Fast Switching Limit pertains to Model B — If switch-
ing happens much faster than diffusion, k � D/σ2, then
we argue that there should be no correlation between the
particles local density and their state; we conclude that
for large switching rates, Sk(ρ) ≡ 1

2 . In this case, we
absorb the contribution of the attractive interactions to
the probability current in a re-defined free-energy lead-
ing to a density equation of Model B form (see [50] for a
full derivation). We conclude that the phase separation
in this limit is driven by an effective attraction (with re-
duced strength) between any pair of agents leading to full
phase separation as predicted by Model B [27].

Fast (but finite) switching leads to Active Model B+
form — Here, we work perturbatively around the fast
switching limit. When considering large but finite val-
ues of k, we perturb the shape function to linear or-
der and write Sk(ρ) = 1/2 + Ak(ρ − ρc). In doing so,
we are implicitly modelling a small amount of demix-
ing due to the finite switching rates. After substitut-
ing this linear perturbation in the convolution in Eq. (5)
and taking a gradient expansion of the non-local terms,
we can re-write the contribution of the attractive in-
teractions to the current up to O(∇4ρ3). The coeffi-
cients of each of the TRS breaking terms are propor-
tional to µk = Ak

8

(
2ρcAk − 1

) ∫
dr U1(r)r2 [50]. Finally,

we use the fact that adding a term of the form αρ|∇ρ|2
to the functional F [ρ(r)] generates terms proportional to
α∇
(
|∇ρ|2

)
−2α(∇ρ)∇2ρ−2αρ∇3ρ in the current. Choos-

ing α = −3µk/2 and again re-defining F [ρ], we write the
density equation in the form

∂tρ(r, t) = ∇ ·
[
ρ(r)

(
∇
(
δF [ρ(r)]

δρ(r)
− 5µk

2
|∇ρ(r)|2

)

+µk

(
∇2ρ(r)

)
∇ρ(r)

)]

(7)
Finally, we conclude that our model belongs to the
AMB+ class, with constants λ = −5µk/2 < 0 and
ζ = −µk < 0 in the notation of Ref. [35].

Active switching drives microphase separation — We
expect to observe the emergence of microphase separa-
tion for a range of switching rates. We confirm this by nu-
merically solving the R-DDFT equations (3) [50, 54, 55].
Specifically, we fix the total density of agents ρ̄ and size
of the solution domain and vary the switching rate κ.
We set ε � kbT as to ensure phase separation from
a nearly-homogenous initial condition. For moderate
switching rates, the system’s steady state supports the
coexistence of droplets driven by a reversal of Ostwald
ripening [50] (Fig. 4). Interestingly, droplet sizes are non-
monotonically controlled by the switching rate, κ. At
higher switching rates, we observe full phase separation
characterized by a single drop in the solution domain.

Note that the suppression of Ostwald ripening was
first discussed in the context of active emulsions [37–39].
We confirm these phenomenological results through the
proper coarse-graining of a minimal microscopic model.
As argued above, at a macroscopic level, our system can
be seen as a binary fluid driven away from equilibrium
by an active switching between the two components.

Microphase separation and Active Model B+ — Fi-
nally, we connect our two main results: our derivation
of the AMB+ density equation used a perturbation of
the fast-switching limit while the presence of microphase
separation was shown for moderate switching rates. In
particular, our linear approximation of the shape func-
tion is valid for any k, provided that |ρ − ρc| is small
enough. This is sufficient to conclude on the classifica-
tion of AMB+ for all switching rates k > 0 [50].

To identify the conditions for microphase separation,
we need to go beyond this linear perturbation. To do
so, we make an ansatz for the functional form of Sk(ρ)
motivated by our computational results (Fig. 3) that we
argue is valid for all k. Using this ansatz, we evaluate
the coefficients of the TRS breaking terms and compare
them to [35] in which microphase separation in the (de-
terministic) AMB+ equation was first studied. We find
our results to be consistent for all switching rates [35, 50].

Namely, for infinitely fast switching, one recovers an
effective equilibrium field theory of Model B type with re-
duced attractive interactions. For fast (but finite) switch-
ing, shallow gradients in the shape function imply neg-
ative but small coefficients of the TRS breaking terms
leading to FPS. For moderate switching rates, the gra-
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FIG. 4. Numerical Analysis of Kinetic Equations. Numerical
solutions of Eqs. (3) for ρ̄ = 0.16 with ε� kBT [50]. Steady-
state solutions show microphase separation (MPS) for (a) κ =
0.01 and (b) κ = 1 but full phase separation (FPS) for (c)
κ = 100. (d) Mean droplet radius 〈rc〉 is non-monotonic in
the switching rate κ, in agreement with Fig. 2(c).

dient steepens leading to large and negative coefficients
leading to ROR and MPS. We argue that k controls how
deep in the MPS region the system is and that the non-
monotonic dependence of the cluster size stems from the
non-monotonic behavior of µk as we decrease k [50].

Discussion — Using a bottom-up approach, we intro-
duce a minimally active microscopic model inspired by
the pili-mediated interactions of Neisseria Meningitidis.
Through a rigorous coarse-graining procedure, we show
that its density equation is of Active Model B+ form.
While, until now, only motile active matter systems were
shown to produce the necessary time-reversal symme-
try breaking terms, we formally link this field theory to
a non-motile active model [35]. Further, we reveal in
our model the existence of microphase separation, con-
trolled by the switching rate k. In the context of bacteria
dynamics, intermittent attractive interactions mediated
by pili dynamics lead to a mechanism controlling bacte-
rial clustering and regulating typical cluster sizes. More
generally, our work lays the foundations to study non-
equilibrium phase separation in field theories. In a field
dominated by dry motile active matter models, our truly
scalar microscopic model offers a new path to model wet
active matter. While our study focuses on bacterial clus-
tering, we believe our model has much wider applications
and can for instance be used to model the dynamics of eu-
karyotic spheroids, in which our fluctuating forces would
capture intercellular tension fluctuations [48, 56].
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“Physics of active emulsions,” Reports on Progress in
Physics 82, 064601 (2019).

[41] J. Grawitter and H. Stark, “Feedback control of pho-
toresponsive fluid interfaces,” Soft Matter 14, 1856–1869
(2018).

[42] D. Bonazzi, V. Lo Schiavo, S. Machata, I. Djafer-
Cherif, P. Nivoit, V. Manriquez, H. Tanimoto, J. Husson,
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NUMERICAL ANALYSIS OF THE MICROSCOPIC MODEL

Non-dimensionalization of the microscopic model

We consider a system of N unit mass particles of size σ characterised by their position ri and the value of an internal
variable εi ∈ {0, 1} defining their interactions. The dynamics in our microscopic model of interacting particles are
governed by the following overdamped Langevin equation:

ṙi = − 1

γ

∑

j 6=i
∇riU(rij , εiεj) +

√
2Dηi, (S1)

ar
X

iv
:2

20
1.

04
09

1v
1 

 [
co

nd
-m

at
.s

of
t]

  1
1 

Ja
n 

20
22



2

where γ is a friction coefficient, D is the bare-diffusion coefficient which sets the temperature in the system (through
Einstein’s relation), U is the total pair interaction potential defined as the superposition of a purely repulsive contri-
bution U0 and a purely attractive contribution U1:

U(rij , εiεj) = U0(rij) + εiεjU1(rij) (S2)

and ηi as a zero mean, unit variance Gaussian white noise term such that

〈ηαi (t)〉 = 0 (S3)
〈
ηαi (t)ηβj (t′)

〉
= δijδαβδ(t− t′) (S4)

with α, β ∈ {x, y}.
The pair interaction potential is defined such that: (1) any two particles interact through steric repulsion when

their center-to-center distance is such that |ri − rj | = rij < σ∗ = 21/6σ (independently of the value of εi and εj) and
(2) if the internal variables of both agents are such that εi = εj = 1, these particles are additionally subjected to an
attractive force with longer range σc = 2σ. Following the classical WCA potential decomposition for the Lennard
Jones potential [1, 2], we define the two contributions to the pair interaction potential as follows:

U0(rij) =

{
4ε
[
(σ/rij)

12 − (σ/rij)
6
]

+ ε, rij < σ∗

0, rij ≥ σ∗
(S5)

U1(rij) =

{
−ε, rij < σ∗

4ε
[
(σ/rij)

12 − (σ/rij)
6
]
, σ∗ ≤ rij ≤ σc.

(S6)

Finally, activity is introduced by allowing the particles to stochastically jump between the on and off states with
constant rates which leads to intermittent attractive forces. In practice, the internal variables {εi}i∈[1,N ] follow
independent two-state Markov processes (or telegraph process) with switching rates kon and koff , leading to

εi = 0
kon−−⇀↽−−
koff

εi = 1 (S7)

and we formally write

∂tP (εi = 0) = −konP (εi = 0) + koffP (εi = 1), (S8a)

∂tP (εi = 1) = konP (εi = 0)− koffP (εi = 1). (S8b)

These dynamics lead to exponentially distributed waiting times between switching events with respective timescales
k−1

on and k−1
off .

We non-dimensionalize our equations using the following scheme:

r∗ =
r

σ
, U∗ =

U

ε
and t∗ =

Dt

σ2
(S9)

where we use σ the nominal particle diameter and ε the depth of the attractive interaction as length and energy
scales, respectively. These are natural choices stemming from the Lennard-Jones potential. We define our timescale
as τ = σ2/D, where again D is the bare-diffusion coefficient which sets the temperature in the system through
Einstein’s relation. Provided these length-, time- and energy scales, we can non-dimensionalize our equation of
motion (S1) to obtain

ṙ∗i = −Γ
∑

j 6=i
∇r∗iU

∗(rij , εiεj) +
√

2η∗i . (S10)

Note that the non-dimensionalization of the noise term in (S1) requires special care. As our equation is dimensionally

homogeneous, we have
[√

2Dηi

]
= LT−1, which implies by dimensional analysis that [ηi] = T 1/2. We can indeed

confirm that this is correct by studying the noise correlation function:

〈
ηαi (t)ηβj (t′)

〉
= δijδαβδ(t− t′) =⇒

∫
dτ 〈ηαi (t)ηαi (t+ τ)〉 = 1. (S11)
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It follows that the noise correlator has the units of the inverse of a time and thus the noise has units T−1/2. Hence,
we non-dimensionalize it as

η∗ =
σ√
D
η. (S12)

Our non-dimensionalisation leaves us with a single free dimensionless parameter Γ = ε/γD = ε/kBT , where the
second equality holds by Einstein’s relation. As we are interested in systems displaying phase separation, we generically
set Γ � 1 in our simulations. Indeed at low values of Γ, attraction is weak compared to the thermal fluctuations,
preventing sustained phase separation.

Similarly, the pair potential of the particles non-dimensionalizes to

U∗0 (r∗ij) =

{
4
[(
r∗ij
)−12 −

(
r∗ij
)−6
]

+ 1, r∗ij < 21/6

0, r∗ij ≥ 21/6
(S13)

U∗1 (r∗ij) =

{
−1, r∗ij < 21/6

4
[(
r∗ij
)−12 −

(
r∗ij
)−6
]
, 21/6 ≤ r∗ij ≤ 2.

(S14)

Throughout the main text and supplementary information, we drop the asterisk notation used above to indicate non-
dimensional variables to make for easier reading. Numerical results are stated in non-dimensional variables whereas
the analytic derivations work in dimensional variables. Finally, we non-dimensionalize the switching rates using the
same timescale as above, which leads us to define the non-dimensional switching rates κon/off = kon/offσ

2/D.

Computational details

We solve the non-dimensionalized Langevin equation (S10) using a stochastic Runge-Kutta scheme [3] with a
maximum time step dt = 1 × 10−5τ . We use periodic boundary conditions in a square box. The size of the box is
set by φ the total volume fraction of agents fixing the side length of the solution domain to L =

√
Nπσ2∗/4φ, with

the number of particles N = 2000 unless stated otherwise. Unless stated otherwise, our simulations are performed at
an average volume fraction φ = 0.3 to allow for the coexistence of regions of high and low density. To increase the
efficiency of our simulations, we use a hybrid neighbor-list method to compute particle interactions based on combined
cell-linked lists and Verlet neighbor lists.

All our simulations were ran for at least 500τ which we found to be long enough for the system to reach a non-
equilibrium steady state. We checked this by measuring the radius of gyration, Rgyr (see below). As the system
reaches steady-state the value of the radius of gyration plateaus. For low switching rates, we run the simulations for
at least (10κ−1)τ which we argue is long enough such that the position and state of each particle at the end of the
simulations had lost its dependence on their initial values.

Unless stated otherwise, our microscopic numerical simulations are initialized by seeding the particles such that
they form a single cluster. Over time, agents may diffuse away from the initial drop depending on the conditions and
the existence of stable dense and dilute phases. Using these initial conditions allows us to vastly reduce the time the
system requires to reach stationarity.

Measuring structural characteristics

The radius of gyration, Rgyr, is defined as

Rgyr(t) =

√
1

N

∑

i

|ri(t)− rcm(t)|, (S15)

where rcm(t) = N−1
∑N
i=1 ri(t) is the position of the center of mass of the particles at time t. We use the radius of

gyration to determine whether the system exhibits full liquid-gas phase separation. In the case where all particles are
clustered in a single drop, we expect this measure to be low as all particles are relatively close to the center of mass
of the cluster. Conversely, the radius of gyration increases in systems where particles are uniformly distributed across
the simulation domain. Note that we use in all our simulations periodic boundary conditions; in simulations leading
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to a dispersed phase, we thus expect the radius of gyration to be monotonically increasing over time as the original
cluster expands but to remain bounded, i.e. it will converge to a finite value set by the size of the simulation box in
the limit t→∞.

To quantify the amount of demixing between on and off states particles, we use a demixing index, Idemix defined
as the fraction of Voronoi neighbors with the same state, i.e.

Idemix =
〈
Ns
i /N

t
i

〉
i

(S16)

where Ns
i and N t

i are the number of same type and total number of neighbouring particles, respectively, and the
average runs over all particles. For a fully demixed system, we would expect an index approaching 1, while a fully
mixed system with equal switching rates leads to Idemix = 0.5.

Finally, we measure the maximal cluster size, smax. At any given time, we proceed to a cluster size analysis;
clusters are defined as sets of particles within interaction range σc of each other.

These measures are used to distinguish the different emergent structures observed in our system as we vary mi-
croscopic parameters. For instance, we identify a microphase separated system as one with high radius of gyration
(which implies no full phase separation) along with moderate maximal cluster size indicating some level of liquid-gas
phase separation present in the system.

Measuring Sκ(ρ) numerically from simulations

To measure the shape function, Sκ(ρ), we take a snapshot of the system at a non-equilibrium steady state for
a chosen value of the non-dimensional switching rate, κ. We then take circular samples of the system with radius
2σ∗ = σc to replicate the range of interaction for any particle, being careful with boundary conditions. For each
sample, we count the number of agents whose center is in the region and the fraction of those which are in an on
state. After repeating this for many samples from different snapshots of the system, we calculate the fraction of agents
which are in an on state for each band of the local density, ρ.

DERIVING R-DDFT KINETIC EQUATIONS FROM MANY-BODY SMOLUCHOWSKI EQUATION

From the equations for our microscopic model, we write down a many-body Smoluchowski equation for the N -agent
distribution function, which we denote by ψN . We set γ = 1 and write

∂tψN ({r1, . . . , rN , ε1, . . . , εN}, t) =

N∑

n=1

[
∇rn ·

[∑

m

∇rnU(rnm, εnεm) +D∇rn

]
ψN + k1(εn)SnψN − k2(εn)ψN

]

(S17)
where rnm = |rn − rm| and we have defined

k1(ε) = εkon + (1− ε)koff and k2(ε) = k1(1− ε) (S18)

and the switch operator Si is defined as follows

SiψN = ψN (r1, . . . , rN , ε1, . . . , 1− εi, . . . , εN ). (S19)

Note that by definition S2
i ψN = ψN . We define the single-agent distribution function, ψ1, as

ψ1(r, ε, t) =

1∑

ε2=0

· · ·
1∑

εN=0

∫
dr2· · ·

∫
drNNψN , (S20)

where we have dropped the subscript on the tagged particle. The factor of N is present as we can choose any one of
the N particles. From this definition, we can derive the evolution equation for the single-agent distribution function
from (S17) by integrating over the remaining position and state variables:

∂tψ1(r, ε, t) = −∇r · F(r, ε, t) +D∆rψ1 + k1(ε)S1ψ1 − k2(ε)ψ1

= ∇r ·
[
D∇rψ1 − F(r, ε, t)

]
+ k1(ε)S1ψ1 − k2(ε)ψ1

(S21)
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where we have introduced the mean force on the tagged particle, F, as

F(r, ε, t) =
1∑

ε2=0

· · ·
1∑

εN=0

∫
dr2 · · ·

∫
drN

[
−

N∑

j=2

∇rU(|r− rj |, εεj)
]
NψN

=

1∑

ε′=0

∫
dr′
[
−∇rU(r, εε′)

]
ψ2(r, r′, ε, ε′, t)

(S22)

for r = |r− r′| and the two agent distribution function, ψ2.
The mean force term here can be written as the sum of two components, accounting for repulsive and attractive

interactions:

F(r, ε, t) =
1∑

ε′=0

∫
dr′
[
−∇rU0(r)

]
ψ2(r, r′, ε, ε′, t) +

∫
dr′
[
−∇rU1(r)

]
ψ2(r, r′, ε, 1, t). (S23)

We consider the mean force for each value of the internal variable, ε, independently:

F(r, 0, t) =

1∑

ε′=0

∫
dr′
[
−∇rU0(r)

]
ψ2(r, r′, 0, ε′, t) =

∫
dr′
[
−∇rU0(r)

]
ψ̃2(r, r′, 0, t) (S24)

F(r, 1, t) =

∫
dr′
[
−∇rU0(r)

]
ψ̃2(r, r′, 1, t) +

∫
dr′
[
−∇rU1(r)

]
ψ2(r, r′, 1, 1, t) (S25)

where we have defined the following notation ψ̃2(r, r′, ε, t) =
∑1
ε′=0 ψ2(r, r′, ε, ε′, t). To simplify the form of this mean

force, we make use of two approximations commonly introduced in Dynamic Density Functional Theory (DDFT)
[2, 4–6]. We first simplify the contribution due to repulsive interactions in the equation for the density of off (ε = 0)
agents and on (ε = 1) agents, respectively. Finally, we detail the mean field approximation used to capture the
attractive contributions to the density equation for on agents. Note that we define ρi(r, t) = ψ1(r, i, t) for i ∈ {0, 1}
as the density of off and on agents, respectively.

Mean force for off agents

We now replace the time-dependent, two agent density with the equivalent density at equilibrium, ψ̃2(r, r′, 0). This
assumption is valid at high density where the steric repulsion highly dictates the particle structure in the system
[2]. This allows us to write the mean force as the gradient of the single-particle direct correlation function for an
inhomogeneous fluid, c1(r), as

∫
dr′
[
−∇rU0(r)

]
ψ̃2(r, r′, 0) = kBTρ0(r)∇r

(
c1(r)

)
. (S26)

where ρ0(r) is the density of off particles at position r.
Following Density Functional Theory (DFT), we connect the single particle direct correlation functional to the

excess free-energy for the repulsive interactions: Fex
rep[ρ(r)]. The result holds exactly at equilibrium; we make the

assumption that it carries over to the non-equilibrium case with the same excess free energy functional. This allows
us to write the contribution due to repulsive interactions as

kBTρ0(r)∇r

(
c1(r)

)
= −ρ0(r)∇

(
δFex

rep[ρ(r)]

δρ(r)

)
. (S27)

For the more familiar form of the DDFT equation as derived in [4], we can consider a local density approximation for
the free energy:

Fex
rep[ρ(r)] =

∫
dr frep

(
ρ(r)

)
,

δFex
rep[ρ(r)]

δρ(r)
= f ′rep

(
ρ(r)

)
(S28)

and define a chemical potential µrep(ρ(r)) = f ′rep

(
ρ(r)

)
. In this notation, the repulsive component of the mean force

is written as −ρ0(r)∇rµrep(ρ(r)).
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Mean force for on agents

The repulsive interactions contribution to the mean force for on agents is of the same form as that derived for the
off agents: −ρ1(r)∇rµrep(ρ(r)), where ρ1(r) is now the density of on particles at r. Note that the chemical potential
is a function of the total density of agents in each case. This makes sense as any pair of agents interact through steric
repulsion.

Focusing now on the attractive contribution to the mean force, we again assume that the instantaneous two agent
distribution function is replaced by its equilibrium counterpart. To re-write this attractive contribution, we use
the following approximation: the attractive interaction potential, U1, is weak compared to the divergent repulsive
potential, U0. It is well understood that a mean field approximation for the two agent distribution function is accurate
for a wide range of temperatures and density for weak (or soft) potentials [2]. This mean field approximation implicitly
assumes that the positions of pairs of agents interacting through this potential are uncorrelated across the system.

We thus write the two agent distribution function as

ψ2(r, r′, 1, 1) ≈ 1

2
ρ1(r)ρ1(r′). (S29)

We substitute it in to the attractive component of (S23) and write

∫
dr′
[
−∇rU1(r)

]
ψ2(r, r′, 1, 1) = −1

2
ρ1(r)∇r

(
U1 ? ρ1

)
(S30)

where the ? here represents a convolution integral. We can define a chemical potential as we did for the repulsive
interaction in the form µatr(ρ1(r)) = 1

2

(
U1 ? ρ1

)
and write the attractive contribution as −ρ1(r)∇rµatr(ρ1(r)). Our

result is of the same form as in [7] where only soft interaction potentials were considered.

Kinetic equations

We can now write the kinetic equations for our model. From (S21), we conclude that the time derivatives of the
on and off particles densities can be written as

∂tρ0(r, t) = ∇r ·
[
D∇rρ0(r) + ρ0∇rµrep(ρ(r))

]
+ kρ1(r)− kρ0(r) (S31a)

∂tρ1(r, t) = ∇r ·
[
D∇rρ1(r) + ρ1∇r

(
µrep(ρ(r)) + µatr(ρ1(r))

)]
+ kρ0(r)− kρ1(r) (S31b)

justifying the R-DDFT approach used in the main text [6, 8–10].

FAST SWITCHING PERTAINS TO MODEL B

We show how to derive a density equation of Model B form from our R-DDFT equations. We take the sum of the
two equations (S31a-S31b) to write an evolution equation for the total density of agents. Following the literature for
equilibrium field theories [11–13], we write the passive contributions, the diffusive and repulsive terms, in terms of a
free-energy-like functional. We also write µatr(ρ(r)) in its full form. The resulting equation is

∂tρ(r, t) = ∇ ·
[
ρ(r)∇

(
δF [ρ(r)]

δρ(r)

)
+

1

2
ρ1(r)∇

(
U1 ? ρ1

)]
. (S32)

As in the main text, we use the approximation of a shape function to write a closed equation for the density of agents:
ρ1(r) = Sk(ρ(r))ρ(r). In the fast switching limit, we argue that this function is approximately 1

2 (for equal switching
rates). We confirm this by measuring the shape function numerically from our simulations of the microscopic model.

We can then write a closed equation for the density of the form

∂tρ(r, t) = ∇ ·
[
ρ(r)∇

(
δF [ρ(r)]

δρ(r)

)
+

1

8
ρ(r)∇

(
U1 ? ρ

)]
. (S33)
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The contribution due to attractive interactions can now be included in a re-defined free energy functional. Indeed,
we define the new functional FB [ρ(r)] as

FB [ρ(r)] = F [ρ(r)] +
1

8

∫
dr
[
ρ(r)

(
U1 ? ρ)

]
(S34)

such that (S33) can be written as

∂tρ(r, t) = ∇ ·
[
ρ(r)∇

(
δFB [ρ(r)]

δρ(r)

)]
. (S35)

This is a density equation of Model B form. We can recover the classical Model B form by rescaling the density and
defining a scalar order parameter φ(r, t) = (ρ(r, t)− ρc)/ρc, where ρc is the critical density for the system. A similar
derivation is found in [12].

FAST (BUT FINITE) SWITCHING LEADS TO ACTIVE MODEL B+ FORM

Derivation of Active Model B+ density equation for linear approximation of Sk(ρ)

In this section, we proceed to the derivation of Active Model B+ equation from R-DDFT equations. The density
equation for an Active Model B+ system is written in the form

∂tρ(r, t) = ∇ ·
[
ρ(r)

(
∇
(
δF(ρ(r))

δρ(r)
+ λ|∇ρ(r)|2

)
− ζ∇ρ(r)∇2ρ(r)

)]
. (S36)

where λ and ζ are constants and F [ρ(r)] contains all the passive terms in the current [12].
From (S32) and substituting our expression for ρ1(r), we write

∂tρ(r, t) = ∇ ·
[
ρ(r)∇

(
δF(ρ(r))

δρ(r)

)
+

1

2
ρ(r)Sk(ρ(r))∇

(∫
dr′ U1(|r′ − r|)ρ(r′)Sk(ρ(r′))

)]
. (S37)

We work perturbatively around the fast switching limit and expand the shape function up to linear order in ρ:

Sk(ρ(r)) =
1

2
+Ak(ρ(r)− ρc) =

1

2
−Akρc +Akρ(r). (S38)

For simplicity, we write Bk = 1
2 − Akρc and use a gradient expansion for the non-local terms in our system (terms

evaluated at r′ and not r):

ρ(r′) = ρ(r) +∇ρ · (r′ − r) +
∇2ρ

2
r2 + . . . (S39)

It follows that

Sk(ρ(r′)) = Bk +Akρ(r′) ≈ Bk +Ak

(
ρ(r) +∇ρ(r) · (r′ − r) +

∇2ρ(r)

2
r2

)
. (S40)

As we are now working with only local terms for the density, we write ρ = ρ(r) for simplicity. The convolution
term involving the attractive potential, U1, can be written as

∫
dr′ U1(|r′ − r|)

(
ρ+∇ρ · (r′ − r) +

∇2ρ

2
r2

)(
Bk +Ak

(
ρ+∇ρ · (r′ − r) +

∇2ρ

2
r2

))
. (S41)

We define the constants

α0 = −
∫
dr U1(|r|), α2 = −

∫
dr |r|2U1(|r|) (S42)

such that α0, α2 > 0 and evaluate the integral as

− α0ρ(Bk +Akρ)− α2

(
Ak
2
|∇ρ|2 +Akρ∇2ρ+

Bk
2
∇2ρ

)
. (S43)
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Returning now to the current in the density equation, we evaluate the total contribution due to attractive interac-
tions as

− ρ(Bk +Akρ)

2
∇
(
α0ρ(Bk +Akρ) + α2

(
Ak
2
|∇ρ|2 +Akρ∇2ρ+

Bk
2
∇2ρ

))
. (S44)

To compare this to the Active Model B+ density equation, we need to first determine which terms can be absorbed
in to a re-defined free energy. The term proportional to α0 can be absorbed, so can the term proportional to B2

k. Up
to order O(∇4ρ3), the remaining terms have coefficient proportional to BkAkα2/4 > 0. We define µk = BkAkα2/4
and return to the density equation to write

∂tρ(r, t) = ∇ ·
[
ρ

(
∇
(
δFa[ρ]

δρ
− µk|∇ρ|2

)
− 2µk∇ρ∇2ρ− 3µkρ∇3ρ

)
(S45)

where Fa is the re-defined free energy after including the terms from the attractive interactions contribution to the
chemical potential. Finally, we use the fact that adding a term of the form zρ|∇ρ|2 to the free energy-like functional
generates terms proportional to

+ z∇
(
|∇ρ|2

)
− 2z(∇ρ)∇2ρ− 2zρ∇3ρ (S46)

in the current of the density equation. We choose z such that −2z = 3µk and re-define the free energy such that

∂tρ(r, t) = ∇ ·
[
ρ

(
∇
(
δFz[ρ]

δρ
− 5µk

2
|∇ρ|2

)
+ µk∇ρ∇2ρ

)]
. (S47)

We conclude that the system is of Active Model B+ form with the coefficients of the two time-reversal-symmetry
breaking terms given by

λ = −5µk
2

< 0 and ζ = −µk < 0. (S48)

We note that both of these coefficients are related to Ak, i.e. to the gradient of the shape function around the critical
density ρc. To get the result in the main text, we recall that Bk = 1

2 − Akρc, hence µk = Ak

8

(
2ρcAk − 1

)
(−α2) =

Ak

8

(
2ρcAk − 1

) ∫
dr U1(r)r2.

Here, we worked perturbatively around the fast switching limit. As k decreases, our linear approximation of the
shape function only remains valid when |ρ− ρc| is sufficiently small. The above results tell us that small fluctuations
about the critical density evolve according to an equation of AMB+ form for any k ∈ (0,∞), hence we can conclude
on AMB+ form for all switching rates.

Microphase separation for moderate switching rates

To conclude on the presence of microphase separation, we need to know more about the specific values of the
coefficients for the TRS breaking terms; in particular, microphase separation is only observed for negative and large
enough values of the TRS breaking terms coefficients. Going beyond the general linear approximation used above, we
here introduce an ansatz motivated by the results of our numerical simulations and write

Sk(ρ) =
1

2
+

1

2
tanh(Yk(ρ− ρc)) (S49)

where the k dependence is contained within the constant Yk > 0, which decreases monotonically as k increases.
We argue that this approximation is valid for the full range of switching rates, k, as opposed to the general linear
approximation that we made above. We then expand the tanh(·) term as

tanh(Yk(ρ− ρc)) = Yk(ρ− ρc)−
Y 3
k

3
(ρ− ρc)3 + . . . (S50)

=

[
− Ykρc +

Y 3
k

3
ρ3
c + . . .

]
+

[
Yk −

Y 3
k

3
(3ρ2

c) + . . .

]
ρ+O(ρ2) (S51)

= − tanh(Ykρc) + Yk(1− tanh2(Ykρc))ρ+ . . . (S52)
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where we have used Yk(1 − tanh2(Ykρc)) = ∂ρc tanh(Ykρc). Note that the infinite sums in the square brackets only
converge if Yk <

π
2ρc
≈ 4.48. If we compare our results to Fig. 3 of the main text, we argue that this condition is

satisfied for all the switching rates studied here as the gradient of the shape function at ρ = ρc is sufficiently shallow.
Note here we are also assuming that D/σ2 ≈ O(1) such that the magnitude of the dimensional switching rate is
comparable to its non-dimensionalized rate. Otherwise, there is a scaling factor to consider when comparing results
for k and κ.

We then write the shape function up to linear order in density:

Sk(ρ) =
1

2

[
1− tanh(Ykρc) + Yk(1− tanh2(Ykρc))ρ+ . . .

]
= Ck +Dkρ+ . . . (S53)

From the reasoning in the previous section, we know that the constant µk, which sets the values of the coefficients
of the TRS breaking terms, is proportional to CkDk for a shape function of the form in (S53). Ck and Dk do not
change sign for any k, so we conclude that the coefficients of the TRS breaking terms do not change sign either.

The value of Ck decreases monotonically as k increases. However, there is a critical k value at which ∂kDk = 0,
which occurs at the value of k for which 1 = 2Ykρc tanh(Ykρc). We believe that this non-monotonicity may explain
the non-monotonic dependence of the typical cluster size on the switching rate, k, that we saw in the numerical results
(see the last section of the SI).

Finally, when the switching rate becomes small enough (k � 10−2) the slope of our shape function may become
large enough and our above argument may break down as the convergence of the infinite sums above is then not
guaranteed, i.e. we may have Yk >

π
2ρc

. Nevertheless, we still expect microphase separation in the low switching rate

regime. Indeed, we expect that, for any k > 0, there will be some non-zero outflow of agents from the drop (after
turning from on to off ) which will eventually balance the inflow of agents from the background fluid as a single drop
grows. This would imply a finite radius at which any drop would stop growing and imply a reversal of the Ostwald
Ripening process. A sufficiently large system would be able to support multiple drops of this size coexisting, which
we identify as microphase separation. A similar argument is given in [14] for the presence of microphase separation
for small but non-zero chemical reaction rates.

In short, our intuition relies on the following coarse-grained model of droplet growth: consider a single liquid droplet
of radius R much smaller than the system size L, i.e. σ � R � L and assume that the droplet is made up entirely
of on particles, such that the volume fraction of on and off particles in the droplet are given respectively by φl and
0. This approximation is particular appropriate in the low switching rate regime, where we have already shown that
a high level of demixing is observed. Finally, we assume that the distribution of particles surrounding the drop is
homogeneous; the relative abundance of each type of particles is thus determined by the switching rates. Let φg be
the volume fraction of the surrounding system gas, then the volume fraction of on and off agents is given by 1

2φg for
equal switching rates.

The volume (area in two dimensions) of the drop V is affected by: (1) an influx of on agents attracted from the
surrounding fluid through the boundary, ∂V , and (2) a net loss of on agent when switching off within the drop. In
two dimensions, the equation for the area of the drop can thus be written as

dV

dt
=
kinφgφl

2
∂V − kV φl, (S54)

where kin is the rate at which on particles are attracted to the drop from the background fluid. Assuming a spherical
drop, we have V = πR2, which allows us to write an equation for the evolution of the droplet radius as

dR

dt
=
kinφgφl

2
− kφlR

2
. (S55)

In the passive case, k = 0, we easily see that the radius of the drop grows indefinitely, at least when the size
of the drop is much less than the size of the system. As the size of the drop approaches the system size, we need
to consider other mechanisms which will prevent infinite growth of the drop like resource limitations. Introducing
switching (k > 0) leads to a finite steady state for the drop size in the system, given by

R∞ =
kinφg
k

. (S56)

This finite-valued steady state for R implies that the switching dynamics are restricting the Ostwald Ripening process
and further imply that multiple drops of finite size may coexist and be stable at stationarity.
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NUMERICAL ANALYSIS OF KINETIC EQUATIONS

Non-dimensionalization of the R-DDFT equations

Our R-DDFT equations (S31) are each of the form

∂tρi(r, t) = ∇ ·
[
D∇ρi(r) +

1

γ
ρi(r)∇

[
µi(ρ(r))

]]
+ kρj(r)− kρi(r), i 6= j. (S57)

Each of the terms in these equations have for dimension T−1L−2 (for spatial dimension d = 2). To see this for the
chemical potential term, we recognize that µ(ρ) = f ′(ρ) where f(ρ) is a free-energy density, with dimensions of an
energy per length squared. It follows that µ has the dimensions of an energy. This is canceled by the friction term
which can also be written as γ = kBT/D through Einstein’s relation, and thus has dimensions of a length divided by
an energy times a time. Note that here we have assumed unit mass.

We assume the same scaling as in the non-dimensionalization of the Langevin equation above:

r∗ =
r

σ
, µ∗ =

µ

ε
and t∗ =

Dt

σ2
. (S58)

Making these substitutions, we derive the non-dimensional equation

∂t∗ρ
∗
i (r
∗, t) = ∇r∗ ·

[
∇r∗ρ

∗
i (r
∗) +

ε

Dγ
ρ∗i (r

∗)∇
[
µ∗i
(
ρ∗(r∗)

)]]
+ κρ∗j (r)− κρ∗i (r)

= ∇r∗ ·
[
∇r∗ρ

∗
i (r
∗) + Γρ∗i (r

∗)∇
[
µ∗i
(
ρ∗(r∗)

)]]
+ κρ∗j (r)− κρ∗i (r).

(S59)

where the two dimensionless variables are exactly the same as those in the non-dimensionalization of the Langevin
equation:

Γ =
ε

γD
=

ε

kBT
and κ =

kσ2

D
. (S60)

Computational details

We solve the non-dimensionalized kinetic equations numerically to confirm the results of our study of the microscopic
model. To do so, we need to evaluate, µrep(ρ) and µatr(ρ), the repulsive and attractive contributions to the chemical
potential, respectively. Splitting up a Lennard-Jones-like potential in this way is common in the literature and suitable
approximations exists for both components. The attractive contribution is written as a mean-field approximation
above which can be evaluated exactly by performing the convolution numerically. We do this by evaluating the
product of the interaction potential and the density of on agents in Fourier space before transforming back to real
space.

The contribution due to repulsive interactions is not something that we can evaluate exactly due to the divergent
potential, so we use an approximation. Significant effort has been devoted to writing a closed form for this chemical
potential [2, 15]. We use the simple but accurate result from scaled particle theory which sets

µrep(η′(r)) = kBT

[
− log(1− η′) +

3η′ − 2η′2

(1− η′)2

]
. (S61)

Here, we have defined a rescaled packing fraction η′(r) = 0.8η(r), where the packing fraction η(r) is itself defined in

terms of the agent density as η(r) =
πσ2
∗

4 ρ(r). A similar method was used in the study of active Brownian particles in
[16].

Note that as we use ε as the energy scale in our non-dimensionalization scheme, the non-dimensionalised chemical
potential for repulsive interactions reads

µ∗rep(η′(r)) =
kBT

ε

[
− log(1− η′) +

3η′ − 2η′2

(1− η′)2

]
=

1

Γ

[
− log(1− η′) +

3η′ − 2η′2

(1− η′)2

]
(S62)
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We can now solve the non-dimensionalized kinetic equations. We fix the total density of agents ρ̄ and size of
the solution domain and vary the switching rate κ. We set ε � kbT as to ensure phase separation from a nearly-
homogenous initial condition. We use a centered finite-difference scheme of 8th-order for spatial derivatives on a
200 × 200 square grid with spacing dx = 0.15 and periodic boundary conditions. We run the simulations until we
judge that the system to have reached a stationary state. We use the ODE23 solver from Matlab which uses explicit
time-integration with a variable time-step for computational efficiently. It is well understood that R-DDFT equations
are stiff [6], thus the choice of the ODE23 solver rather than a higher order, more accurate solver is motivated by a
compromise between accuracy and computational efficiency.

Presence of reverse Ostwald ripening and microphase separation

In Fig. S1, we show examples of the time evolution of the density field in the regime where microphase separation
is observed.

FIG. S1. Microphase Separation in Numerical Analysis of R-DDFT Equations. We solve the kinetic equations numerically to
demonstrate the presence of microphase separation at κ = 1. An initially nearly-homogeneous distribution of agents exhibits
spinodal decomposition and forms a system full of mesoscopic droplets of varying sizes after some droplet coalescence. In time,
the coarsening process leads to a homogeneous distribution of droplet sizes.

Comparison of results with AMB+ deterministic phase diagram

We comment here on the agreement between our results and those of the mean-field phase diagram for Active Model
B+ [12]. Our formal coarse-graining procedure provided us with a relationship between the coefficients of the two
time reversal symmetry breaking terms for our system, namely 2λ = 5ζ. We have also shown that our constants are
non-positive for all switching rates considered in the numerical analysis. We plot this curve in the (ζ, λ) plane in
Figure S2.

The results of [12] predict that the system will exhibit microphase separation when λζ � 0. We conclude that there
is good agreement between our work and the phase diagram of [12]: when k →∞, we argue that our system pertains
to Model B whose dynamics are entirely equilibrium. Model B is well understood to exhibit Ostwald Ripening and
hence full phase separation. We showed this analytically by arguing that Sk(ρ) ≈ 1

2 for high enough switching rates,
thus λ, ζ ≈ 0, so we are in the correct region in the phase diagram for Ostwald ripening. For fast (but finite) switching
rates, our results show that the system is of AMB+ type but λ and ζ close enough to zero (i.e. the gradient of Sk(ρ)
is shallow enough) that our system shows Ostwald ripening and full phase separation.

As we lower further the switching rates, we see that the gradient of Sk(ρ) increases further, hence by our work above
the magnitudes of the TRS breaking terms’ coefficients increase and the system can exhibit microphase separation
according to the above phase diagram. Indeed, we confirmed this phenomena by solving both the equations of motion
of the microscopic model and the R-DDFT kinetic equations numerically. We also argued above that the coefficients
of the TRS breaking terms behave non-monotonically with k. Said differently, the value of k governs how deep in the
microphase separation regime the system is. As such, the non-monotonic behavior of λ and ζ with k could explain
the non-monotonic relation between the switching rate and the typical cluster size observed in our numerical analysis.

As detailed above, we expect the system to continue to exhibit microphase separation even for very low switching
rates (k � 10−2). We thus believe that the coefficients of the TRS breaking terms will remain large and negative for
all positive k.
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FIG. S2. Phase Diagram for Mean Field Active Model B+ equation. We compare our results to the phase diagram for the
deterministic Active Model B+ equation [12]. There are two regions for which the equation exhibits reverse Ostwald ripening
depending on the signs of the coefficients. We identify the path that the coefficients of the two time reversal symmetry breaking
terms in the model of the current work take in (ζ, λ) space for k ∈ [10−2,∞), colored in blue. The phase diagram predicts
reverse Ostwald ripening for low switching rates and Ostwald ripening for fast switching. We conclude on good agreement
between the phase diagram of [12] and the current work.
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