273 research outputs found
Efficient quantum measurement of Pauli operators in the presence of finite sampling error
Estimating the expectation value of an operator corresponding to an
observable is a fundamental task in quantum computation. It is often impossible
to obtain such estimates directly, as the computer is restricted to measuring
in a fixed computational basis. One common solution splits the operator into a
weighted sum of Pauli operators and measures each separately, at the cost of
many measurements. An improved version collects mutually commuting Pauli
operators together before measuring all operators within a collection
simultaneously. The effectiveness of doing this depends on two factors.
Firstly, we must understand the improvement offered by a given arrangement of
Paulis in collections. In our work, we propose two natural metrics for
quantifying this, operating under the assumption that measurements are
distributed optimally among collections so as to minimise the overall finite
sampling error. Motivated by the mathematical form of these metrics, we
introduce SORTED INSERTION, a collecting strategy that exploits the weighting
of each Pauli operator in the overall sum. Secondly, to measure all Pauli
operators within a collection simultaneously, a circuit is required to rotate
them to the computational basis. In our work, we present two efficient circuit
constructions that suitably rotate any collection of independent commuting
-qubit Pauli operators using at most and
two-qubit gates respectively. Our methods are numerically illustrated in the
context of the Variational Quantum Eigensolver, where the operators in question
are molecular Hamiltonians. As measured by our metrics, SORTED INSERTION
outperforms four conventional greedy colouring algorithms that seek the minimum
number of collections.Comment: 19 pages, journal versio
The African surgical outcomes-2 (Asos-2) pilot trial, a mixed-methods implementation study
Funding Information: The ASOS-2 Pilot Trial was supported by a grant (OPP#1161108) from the Bill & Melinda Gates Foundation.Peer reviewe
Recommended from our members
Artificial intelligence for climate prediction of extremes: state of the art, challenges, and future perspectives
Extreme events such as heat waves and cold spells, droughts, heavy rain, and storms are particularly challenging to predict accurately due to their rarity and chaotic nature, and because of model limitations. However, recent studies have shown that there might be systemic predictability that is not being leveraged, whose exploitation could meet the need for reliable predictions of aggregated extreme weather measures on timescales from weeks to decades ahead. Recently, numerous studies have been devoted to the use of artificial intelligence (AI) to study predictability and make climate predictions. AI techniques have shown great potential to improve the prediction of extreme events and uncover their links to large‐scale and local drivers. Machine and deep learning have been explored to enhance prediction, while causal discovery and explainable AI have been tested to improve our understanding of the processes underlying predictability. Hybrid predictions combining AI, which can reveal unknown spatiotemporal connections from data, with climate models that provide the theoretical foundation and interpretability of the physical world, have shown that improving prediction skills of extremes on climate‐relevant timescales is possible. However, numerous challenges persist in various aspects, including data curation, model uncertainty, generalizability, reproducibility of methods, and workflows. This review aims at overviewing achievements and challenges in the use of AI techniques to improve the prediction of extremes at the subseasonal to decadal timescale. A few best practices are identified to increase trust in these novel techniques, and future perspectives are envisaged for further scientific development
Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia
<p>Abstract</p> <p>Background</p> <p>White matter hyperintensities (WMH) can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs) of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH) with 17 controls to investigate physiological changes underlying this diagnosis.</p> <p>Results</p> <p>Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p<0.001) and an increase in relative powers of slow activity in patients (theta power 0.32 ± 0.11 versus 0.14 ± 0.09; p<0.001 and delta power 0.31 ± 0.14 versus 0.23 ± 0.09; p<0.05). Lower relative beta power was related to worse cognitive performance in a linear regression analysis (standardized beta = 0.67, p<0.01).</p> <p>Conclusions</p> <p>This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.</p
Protecting tropical forests from the rapid expansion of rubber using carbon payments
Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of 51 per tCO2are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection
Accretion, Outflows, and Winds of Magnetized Stars
Many types of stars have strong magnetic fields that can dynamically
influence the flow of circumstellar matter. In stars with accretion disks, the
stellar magnetic field can truncate the inner disk and determine the paths that
matter can take to flow onto the star. These paths are different in stars with
different magnetospheres and periods of rotation. External field lines of the
magnetosphere may inflate and produce favorable conditions for outflows from
the disk-magnetosphere boundary. Outflows can be particularly strong in the
propeller regime, wherein a star rotates more rapidly than the inner disk.
Outflows may also form at the disk-magnetosphere boundary of slowly rotating
stars, if the magnetosphere is compressed by the accreting matter. In isolated,
strongly magnetized stars, the magnetic field can influence formation and/or
propagation of stellar wind outflows. Winds from low-mass, solar-type stars may
be either thermally or magnetically driven, while winds from massive, luminous
O and B type stars are radiatively driven. In all of these cases, the magnetic
field influences matter flow from the stars and determines many observational
properties. In this chapter we review recent studies of accretion, outflows,
and winds of magnetized stars with a focus on three main topics: (1) accretion
onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and
(3) winds from isolated massive magnetized stars. We show results obtained from
global magnetohydrodynamic simulations and, in a number of cases compare global
simulations with observations.Comment: 60 pages, 44 figure
Altered fibroblast proteoglycan production in COPD
<p>Abstract</p> <p>Background</p> <p>Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production.</p> <p>Methods</p> <p>Proliferation, proteoglycan production and the response to TGF-β<sub>1 </sub>were examined <it>in vitro </it>in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects.</p> <p>Results</p> <p>Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β<sub>1 </sub>triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β<sub>1 </sub>than those from control subjects.</p> <p>Conclusions</p> <p>The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.</p
- …