534 research outputs found

    O-Band Subwavelength Grating Filters in a Monolithic Photonics Technology

    Full text link
    The data communications industry has begun transitioning from electrical to optical interconnects in datacenters in order to overcome performance bottlenecks and meet consumer needs. To mitigate the costs associated with this change and achieve performance for 5G and beyond, it is crucial to explore advanced photonic devices that can enable high-bandwidth interconnects via wavelength-division multiplexing (WDM) in photonic integrated circuits. Subwavelength grating (SWG) filters have shown great promise for WDM applications. However, the small feature sizes necessary to implement these structures have prohibited them from penetrating into industrial applications. To explore the manufacturability and performance of SWG filters in an industrial setting, we fabricate and characterize O-band subwavelength grating filters using the monolithic photonics technology at GLOBALFOUNDRIES (GF). We demonstrate a low drop channel loss of -1.2 dB with a flat-top response, a high extinction ratio of -30 dB, a 3 dB channel width of 5 nm and single-source thermal tunability without shape distortion. This filter structure was designed using elements from the product design kit provided by GF and functions in a compact footprint of 0.002 mm2 with a minimum feature size of 150 nm.Comment: 4 pages, 3 figure

    The Polarized 3-He Target

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Polarization observables in p-d scattering below 30 MeV

    Full text link
    Differential and total breakup cross sections as well as vector and tensor analyzing powers for p-d scattering are studied for energies above the deuteron breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is expanded in terms of the correlated hyperspherical harmonic basis and the elastic S-matrix is obtained using the Kohn variational principle in its complex form. The effects of the Coulomb interaction, which are expected to be important in this energy range, have been rigorously taken into account. The Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
    corecore