10,576 research outputs found
Almost Dark Galaxies: The Search for Optical Counterparts
Presented in this paper are results from neutral hydrogen (HI) imaging and analysis of the Almost Dark galaxies AGC 219533, AGC 227982, and AGC 268363 using new, higher resolution observations from the Very Large Array (VLA). Selected from the ALFALFA survey, Almost Dark galaxies possess significant HI reservoirs but, when the HI data is compared to survey-depth ground-based optical imaging, their optical stellar counterparts have extremely low surface brightnesses. AGC 219533 is one such object. The other two sources, AGC 227982 and AGC 26833, were candidate dark galaxies, as no stellar counterpart was identified in initial ALFALFA optical matching, and as such they possessed some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. The new multiconfiguration, high angular (~20 ) and spectral (1.7 km/s) resolution HI observations presented here have produced spatially resolved column density and velocity distribution moment maps where the HI has been localized. HI masses are derived from VLA flux integral values and ALFALFA distance estimates, and are consistent with those derived from ALFALFA fluxes. Comparison of our resolved HI observations to Sloan Digitized Sky Survey (SDSS) optical images reveals previously unknown optical components for AGC 227982 and AGC 268363, and confirms the association with a very low surface brightness stellar counterpart for AGC 219533. These new results eliminate the three galaxies\u27 candidacy as dark galaxies
Cooperative behavior of qutrits with dipole-dipole interactions
We have identified a class of many body problems with analytic solution
beyond the mean-field approximation. This is the case where each body can be
considered as an element of an assembly of interacting particles that are
translationally frozen multi-level quantum systems and that do not change
significantly their initial quantum states during the evolution. In contrast,
the entangled collective state of the assembly experiences an appreciable
change. We apply this approach to interacting three-level systems.Comment: 5 pages, 3 figures. Minor correction
Beyond the Elliptic Genus
Given a Riemann surface and a riemannian manifold M with certain restrictions, we construct a cobordism invariant of M. This invariant is a generalization of the elliptic genus and it shares some similar properties
Ariel - Volume 10 Number 2
Executive Editors
Madalyn Schaefgen
David Reich
Business Manager
David Reich
News Editors
Medical College
Edward Zurad
CAHS
John Guardiani
World
Mark Zwanger
Features Editors
Meg Trexler
Jim O\u27Brien
Editorials Editor
Jeffrey Banyas
Photography and Sports Editor
Stuart Singer
Commons Editor
Brenda Peterso
Summary statement of the Asilomar conference on recombinant DNA molecules
This meeting was organized to review scientific progress in research on recombinant DNA molecules and to discuss appropriate ways to deal with the potential biohazards of this work. Impressive scientific achievements have already been made in this field and these techniques have a remarkable potential for furthering our understanding of fundamental biochemical processes in pro- and eukaryotic cells. The use of recombinant DNA methodology promises to revolutionize the practice of molecular biology. Although there has as yet been no practical application of the new techniques, there is every reason to believe that they will have significant practical utility in the future
Superlubricity - a new perspective on an established paradigm
Superlubricity is a frictionless tribological state sometimes occurring in
nanoscale material junctions. It is often associated with incommensurate
surface lattice structures appearing at the interface. Here, by using the
recently introduced registry index concept which quantifies the registry
mismatch in layered materials, we prove the existence of a direct relation
between interlayer commensurability and wearless friction in layered materials.
We show that our simple and intuitive model is able to capture, down to fine
details, the experimentally measured frictional behavior of a hexagonal
graphene flake sliding on-top of the surface of graphite. We further predict
that superlubricity is expected to occur in hexagonal boron nitride as well
with tribological characteristics very similar to those observed for the
graphitic system. The success of our method in predicting experimental results
along with its exceptional computational efficiency opens the way for modeling
large-scale material interfaces way beyond the reach of standard simulation
techniques.Comment: 18 pages, 7 figure
A Free-Algebraic Solution for the Planar Approximation
An explicit solution for the generating functional of n-point functions in
the planar approximation is given in terms of two sets of free-algebraic
annihilation and creation operators.Comment: 15 pages, added referenc
Spectral properties of finite laser-driven lattices of ultracold Rydberg atoms
We investigate the spectral properties of a finite laser-driven lattice of
ultracold Rydberg atoms exploiting the dipole blockade effect in the frozen
Rydberg gas regime. Uniform one-dimensional lattices as well as lattices with
variable spacings are considered. In the case of a weak laser coupling, we find
a multitude of many-body Rydberg states with well-defined excitation properties
which are adiabatically accessible starting from the ground state. A
comprehensive analysis of the degeneracies of the spectrum as well as of the
single and pair excitations numbers of the eigenstates is performed. In the
strong laser regime, analytical solutions for the pseudo-fermionic eigenmodes
are derived. Perturbative energy corrections for this approximative approach
are provided.Comment: 17 pages, 12 figure
The Algebras of Large N Matrix Mechanics
Extending early work, we formulate the large N matrix mechanics of general
bosonic, fermionic and supersymmetric matrix models, including Matrix theory:
The Hamiltonian framework of large N matrix mechanics provides a natural
setting in which to study the algebras of the large N limit, including
(reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We
find in particular a broad array of new free algebras which we call symmetric
Cuntz algebras, interacting symmetric Cuntz algebras, symmetric
Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the
role of these algebras in solving the large N theory. Most important, the
interacting Cuntz algebras are associated to a set of new (hidden) local
quantities which are generically conserved only at large N. A number of other
new large N phenomena are also observed, including the intrinsic nonlocality of
the (reduced) trace class operators of the theory and a closely related large N
field identification phenomenon which is associated to another set (this time
nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark
Kinetics of active surface-mediated diffusion in spherically symmetric domains
We present an exact calculation of the mean first-passage time to a target on
the surface of a 2D or 3D spherical domain, for a molecule alternating phases
of surface diffusion on the domain boundary and phases of bulk diffusion. We
generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a
biased diffusion in a general annulus with an arbitrary number of regularly
spaced targets on a partially reflecting surface. The presented approach is
based on an integral equation which can be solved analytically. Numerically
validated approximation schemes, which provide more tractable expressions of
the mean first-passage time are also proposed. In the framework of this minimal
model of surface-mediated reactions, we show analytically that the mean
reaction time can be minimized as a function of the desorption rate from the
surface.Comment: Published online in J. Stat. Phy
- …
