9 research outputs found

    About females and males: continuity and discontinuity in flies

    Full text link
    Through the decades of relentless and dedicated studies in Drosophila melanogaster, the pathway that governs sexual development has been elucidated in great detail and has become a paradigm in understanding fundamental cell-fate decisions. However, recent phylogenetic studies show that the molecular strategy used in Drosophila deviates in some important aspects from those found in other dipteran flies and suggest that the Drosophila pathway is likely to be a derivative of a simpler and more common principle. In this essay, I will discuss the evolutionary plasticity of the sex-determining pathway based on studies in the common housefly, Musca domestica. Diversification appears to primarily arise from subtle differences in the regulation of the key switch gene transformer at the top of the pathway. On the basis of these findings I propose a new idea on how the Drosophila pathway may have evolved from a more archetypal system such as in M. domestica. In essence, the arrival of an X counting mechanism mediated by Sex-lethal to compensate for X linked gene dose differences set the stage for an intimate coupling of the two pathways. Its precedent recruitment to the dosage compensation pathway allowed for an intervention in the regulation of transformer where it gradually and eventually' completely substituted for a need of transformer autoregulation

    Detection, Purity Analysis, and Quality Assurance of Adulterated Peanut (Arachis hypogaea) Oils

    No full text
    The intake of adulterated and unhealthy oils and trans-fats in the human diet has had negative health repercussions, including cardiovascular disease, causing millions of deaths annually. Sadly, a significant percentage of all consumable products including edible oils are neither screened nor monitored for quality control for various reasons. The prospective intake of adulterated oils and the associated health impacts on consumers is a significant public health safety concern, necessitating the need for quality assurance checks of edible oils. This study reports a simple, fast, sensitive, accurate, and low-cost chemometric approach to the purity analysis of highly refined peanut oils (HRPO) that were adulterated either with vegetable oil (VO), canola oil (CO), or almond oil (AO) for food quality assurance purposes. The Fourier transform infrared spectra of the pure oils and adulterated HRPO samples were measured and subjected to a partial-least-square (PLS) regression analysis. The obtained PLS regression figures-of-merit were incredible, with remarkable linearity (R2 = 0.994191 or better). The results of the score plots of the PLS regressions illustrate pattern recognition of the adulterated HRPO samples. Importantly, the PLS regressions accurately determined percent compositions of adulterated HRPOs, with an overall root-mean-square-relative-percent-error of 5.53% and a limit-of-detection as low as 0.02% (wt/wt). The developed PLS regressions continued to predict the compositions of newly prepared adulterated HRPOs over a period of two months, with incredible accuracy without the need for re-calibration. The accuracy, sensitivity, and robustness of the protocol make it desirable and potentially adoptable by health departments and local enforcement agencies for fast screening and quality assurance of consumable products
    corecore