52 research outputs found

    Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease – a combined tissue microarray, in vitro and in vivo study

    Get PDF
    BACKGROUND: Targeting signaling pathways is an attractive approach in many malignancies. The PI3K/Akt/mTOR pathway is activated in a number of human neoplasms, accompanied by lower overall and/or disease free survival. mTOR kinase inhibitors have been introduced in the therapy of renal cell carcinoma and mantle cell lymphoma, and several trials are currently underway. However, the pathological characterization of mTOR activity in lymphomas is still incomplete. METHODS: mTOR activity and the elements of mTOR complexes were investigated by immunohistochemistry on tissue microarrays representing different human non-Hodgkin-lymphomas (81 cases) and Hodgkin-lymphomas (87 cases). The expression of phospho-mTOR, phospho-4EBP1, phospho-p70S6K, phospho-S6, Rictor, Raptor and Bcl-2, Bcl-xL, Survivin and NF-kappaB-p50 were evaluated, and mTOR activity was statistically analyzed along with 5-year survival data. The in vitro and in vivo effect of the mTOR inhibitor rapamycin was also examined in human Hodgkin-lymphoma cell lines. RESULTS: The majority (>50%) of mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma and Hodgkin-lymphoma cases showed higher mTOR activity compared to normal lymphoid tissues. Hodgkin-lymphoma was characterized by high mTOR activity in 93% of the cases, and Bcl-xL and NF-kappaB expression correlated with this mTOR activity. High mTOR activity was observed in the case of both favorable and unfavorable clinical response. Low mTOR activity was accompanied by complete remission and at least 5-year disease free survival in Hodgkin-lymphoma patients. However, statistical analysis did not identify correlation beetween mTOR activity and different clinical data of HL patients, such as survival. We also found that Rictor (mTORC2) was not overexpressed in Hodgkin-lymphoma biopsies and cell lines. Rapamycin inhibited proliferation and induced apoptosis in Hodgkin-lymphoma cells both in vitro and in vivo, moreover, it increased the apoptotic effect of chemotherapeutic agents. CONCLUSIONS: Targeting mTOR activity may be a potential therapeutic tool in lymphomas. The presence of mTOR activity probably indicates that the inclusion of mTOR inhibition in the therapy of Hodgkin-lymphomas may be feasible and beneficial, especially when standard protocols are ineffective, and it may also allow dose reduction in order to decrease late treatment toxicity. Most likely, the combination of mTOR inhibitors with other agents will offer the highest efficiency for achieving the best clinical response

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, ÎČ-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1ÎČ, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    Impact of Dreissena fouling on the physiological condition of native and invasive bivalves : interspecific and temporal variations

    Get PDF
    The impact of Dreissena fouling on unionids has hardly been studied in Europe, despite the fact that in some ecosystems (e.g. Lake Balaton, Hungary) infestations of several hundreds to a thousand individuals per unionid have been observed. At present, the zebra mussel Dreissena polymorpha is a dominant species in Lake Balaton and in the last decade three other invasive bivalves were introduced, potentially increasing the pressure on native unionid survival. We examined whether the fouling of dreissenids (zebra and quagga (D. rostriformis bugensis) mussels) has a negative impact on native (Anodonta anatina, Unio pictorum and U. tumidus) and invasive (Corbicula fluminea and Sinanodonta woodiana) bivalves and whether there are any interspecific and temporal variations in fouling intensity and physiological condition measured by standard condition index and glycogen content. A significant negative impact was detected on native unionids only in July and September (no impact was detected in May), when the fouling rate was high. For invasive species, a significant negative impact was detected on S. woodiana with a high level of dressenid infestation; whereas no significant impact was detected on C. fluminea. Overall, this study confirms that Dreissena may threaten unionid species including the invasive S. woodiana, although high interspecific and temporal variations were observed. This situation should be taken into account in future ecological and conservational assessments because species respond differently to Dreissena fouling and effects seem to be more pronounced in late summer/early autumn. In addition, this study provides the first evidence that the invasive C. fluminea appear to be less vulnerable to dressenid fouling.The study was supported by the Hungarian Scientific Fund (KTIA-OTKA) under the contract No. CNK80140

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF

    GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas

    Get PDF
    Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions.Metabolic characteristics of human glioma cell models - including mitochondrial function, glycolytic pathway and energy substrate oxidation - in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry.U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation).Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link
    • 

    corecore