135 research outputs found

    Hamiltonian Electric/Magnetic Duality and Lorentz Invariance

    Get PDF
    In (3+1) Hamiltonian form, the conditions for the electric/magnetic invariance of generic self-interacting gauge vector actions and the definition of the duality generator are obvious. Instead, (3+1) actions are not intrinsically Lorentz invariant. Imposing the Dirac-Schwinger stress tensor commutator requirement to enforce the latter yields a differential constraint on the Hamiltonian which translates into the usual Lagrangian form of the duality invariance condition obeyed by Maxwell and Born-Infeld theories. We also discuss covariance properties of some analogous scalar models.Comment: 7 pages, LaTeX, no figure

    Shock-Free Wave Propagation in Gauge Theories

    Full text link
    We present the shock-free wave propagation requirements for massless fields. First, we briefly argue how the "completely exceptional" approach, originally developed to study the characteristics of hyperbolic systems in 1+1 dimensions, can be generalized to higher dimensions and used to describe propagation without emerging shocks, with characteristic flow remaining parallel along the waves. We then study the resulting requirements for scalar, vector, vector-scalar and gravity models and characterize physically acceptable actions in each case.Comment: 30 pages, LaTeX, no figure

    Supersymmetric Strings and Waves in D=3, N=2 Matter Coupled Gauged Supergravities

    Full text link
    We construct new 1/2 supersymmetric solutions in D=3, N=2, matter coupled, U(1) gauged supergravities and study some of their properties. In the most general case they represent a string superposed with gravitational and Chern-Simons electromagnetic waves. The waves are attached to the string and the solution satisfies an electromagnetic self-duality relation. When the sigma model is non-compact it interpolates between an asymptotically Kaigorodov space and a naked singularity. For the compact sigma model there is a regular horizon with the Kaigorodov geometry and asymptotically it is either Minkowskian or a pp-wave. When the sigma manifold is flat our solutions describe either AdS_3 or Kaigorodov space or a pp-wave in AdS_3.Comment: 19 pages, 1 figure, v2:a reference added, minor improvement

    Godel-Type Metrics in Various Dimensions

    Full text link
    Godel-type metrics are introduced and used in producing charged dust solutions in various dimensions. The key ingredient is a (D-1)-dimensional Riemannian geometry which is then employed in constructing solutions to the Einstein-Maxwell field equations with a dust distribution in D dimensions. The only essential field equation in the procedure turns out to be the source-free Maxwell's equation in the relevant background. Similarly the geodesics of this type of metric are described by the Lorentz force equation for a charged particle in the lower dimensional geometry. It is explicitly shown with several examples that Godel-type metrics can be used in obtaining exact solutions to various supergravity theories and in constructing spacetimes that contain both closed timelike and closed null curves and that contain neither of these. Among the solutions that can be established using non-flat backgrounds, such as the Tangherlini metrics in (D-1)-dimensions, there exists a class which can be interpreted as describing black-hole-type objects in a Godel-like universe.Comment: REVTeX4, 19 pp., no figures, improved and shortened version, note the slight change in the title [accepted for publication in Classical and Quantum Gravity

    Lienard-Wiechert Potentials in Even Dimensions

    Get PDF
    The motion of point charged particles is considered in an even dimensional Minkowski space-time. The potential functions corresponding to the massless scalar and the Maxwell fields are derived algorithmically. It is shown that in all even dimensions particles lose energy due to acceleration

    Heterotrophic ammonium removal by a novel hatchery isolate Acinetobacter calcoaceticus STB1

    Get PDF
    Cataloged from PDF version of article.A novel bacterial strain, STB1, was isolated from a commercial sea bass hatchery and found to display high heterotrophic ammonium removal characteristics at different concentrations of ammonium (NH4+-N). The species identity of STB1 was determined via 16S rRNA gene sequence analysis to be Acinetobacter calcoaceticus. We evaluated ammonium removal characteristics of STB1 at varying ammonium concentrations, and observed that STB1 can almost completely remove ammonium at low (50 mg l -1), and medium (100 mg l -1) concentrations within 72 h, while 45% ammonium removal was observed at a higher concentration (210 mg l -1) during the same period. Trace amount of the metabolized ammonium was converted to nitrite or nitrate and 22.16% of total nitrogen was incorporated into cell biomass, while 4.34% of total nitrogen was initially incorporated into cell biomass and subsequently released to the supernatant fraction in the 100 mg l -1 sample. Most of the remaining conversion products are expected to be gaseous denitrification products. Toxicological studies with Artemia salina (brine shrimp) nauplii revealed that STB1 strain is non-toxic to Artemia larvae, which suggests that STB1 can be safely and efficiently utilized in water quality enrichment in aquatic ecosystems. © 2012 Elsevier Ltd

    Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web

    Get PDF
    Cataloged from PDF version of article.A novel biocomposite material was developed by immobilizing an ammonia-oxidizing bacterial strain, Acinetobacter calcoaceticus STB1, on an electrospun porous cellulose acetate (CA) nanofibrous web. Ammonium removal characteristics of the STB1 immobilized CA nanofibrous web were determined at varying initial ammonium concentrations, and removal rates of 100%, 98.5% and 72% were observed within 48 h for 50 mg L-1, 100 mg L-1 and 200 mg L-1 samples, respectively. Most of the ammonia is inferred to be converted into nitrogen or is accumulated as bacterial biomass, as only trace amounts of ammonium were converted into nitrite or nitrate. Reusability test results indicate that, at an initial ammonium concentration of 100 mg L-1, bacteria-immobilized CA nanofibrous webs can be reused for at least 5 cycles. SEM images of the STB1/CA nanofibrous web after five cycles of reuse and rigorous washing demonstrate that bacterial biofilms strongly adhere to nanofiber surfaces
    corecore