258 research outputs found

    Magnetic Excitations of the 2-D Sm Spin Layers in Sm(La,Sr)CuO4

    Full text link
    We present specific heat and susceptibility data on Sm(La,Sr)CuO4 in magnetic fields up to 9 T and temperatures down to 100 mK. We find a broad peak in specific heat which is insensitive to magnetic field at a temperature of 1.5 K with a value of 2.65 J/mol K. The magnetic susceptibility at 5 T continues to increase down to 2 K, the lowest temperature measured. The data suggest that the Sm spin system may be an ideal realization of the frustrated Heisenberg antiferromagnet on the square lattice.Comment: 2 pages, 2 figures, submitted to IC

    Controllable chirality-induced geometrical Hall effect in a frustrated highly-correlated metal

    Full text link
    A current of electrons traversing a landscape of localized spins possessing non-coplanar magnetic order gains a geometrical (Berry) phase which can lead to a Hall voltage independent of the spin-orbit coupling within the material--a geometrical Hall effect. We show that the highly-correlated metal UCu5 possesses an unusually large controllable geometrical Hall effect at T<1.2K due to its frustration-induced magnetic order. The magnitude of the Hall response exceeds 20% of the \nu=1 quantum Hall effect per atomic layer, which translates into an effective magnetic field of several hundred Tesla acting on the electrons. The existence of such a large geometric Hall response in UCu5 opens a new field of inquiry into the importance of the role of frustration in highly-correlated electron materials.Comment: article and supplemental informatio

    Momentum Dependence of Resonant Inelastic X-Ray Scattering Spectrum in Insulating Cuprates

    Full text link
    The resonant inelastic x-ray scattering spectrum in insulating cuprates is examined by using the exact diagonalization technique on small clusters in the two-dimensional Hubbard model with second and third neighbor hopping terms. When the incident photon energy is tuned near the Cu K absorption edges, we find that the features of the unoccupied upper Hubbard band can be extracted from the spectrum through an anisotropic momentum dependence. They provide an opportunity for the understanding of the different behavior of hole- and electron-doped superconductors.Comment: 4 pages with 4 figures, to be published in PR

    Electronic Structure of New Multiple Band Pt-Pnictide Superconductors APt3P

    Full text link
    We report LDA calculated band structure, densities of states and Fermi surfaces for recently discovered Pt-pnictide superconductors APt3P (A=Ca,Sr,La), confirming their multiple band nature. Electronic structure is essentially three dimensional, in contrast to Fe pnictides and chalcogenides. LDA calculated Sommerfeld coefficient agrees rather well with experimental data, leaving little space for very strong coupling superconductivity, suggested by experimental data on specific heat of SrPt3P. Elementary estimates show, that the values of critical temperature can be explained by rather weak or moderately strong coupling, while the decrease of superconducting transition temperature Tc from Sr to La compound can be explained by corresponding decrease of total density of states at the Fermi level N(E_F). The shape of the density of states near the Fermi level suggests that in SrPt3P electron doping (such as replacement Sr by La) decreases N(E_F) and Tc, while hole doping (e.g. partial replacement of Sr with K, Rb or Cs, if possible) would increase N(E_F) and possibly Tc.Comment: 5 pages, 5 figure

    Spin Liquid State around a Doped Hole in Insulating Cuprates

    Full text link
    The numerically exact diagonalization study on small clusters of the t-J model with the second- and third- neighbor hopping terms shows that a novel spin liquid state is realized around a doped hole with momentum k=(pi,0) and energy \sim 2J compared with that with (pi/2,pi/2) in insulating cuprates, where the spin and charge degrees of freedom are approximately decoupled. Our finding implies that the excitations in the insulating cuprates are mapped onto the the d-wave resonating valence bond state.Comment: 4 pages, 4 EPS figures, to be published in J. Phys. Soc. Jpn. Vol. 69, No.1 January, 200

    Novel multiple-band superconductor SrPt2As2

    Full text link
    We present LDA calculated electronic structure of recently discovered superconductor SrPt2As2 with Tc=5.2K. Despite its chemical composition and crystal structure are somehow similar to FeAs-based high-temperature superconductors, the electronic structure of SrPt2As2 is very much different. Crystal structure is orthorhombic (or tetragonal if idealized) and has layered nature with alternating PtAs4 and AsPt4 tetrahedra slabs sandwiched with Sr ions. The Fermi level is crossed by Pt-5d states with rather strong admixture of As-4p states. Fermi surface of SrPt2As2 is essentially three dimensional, with complicated sheets corresponding to multiple bands. We compare SrPt2As2 with 1111 and 122 representatives of FeAs-class of superconductors, as well as with isovalent (Ba,Sr)Ni2As2 superconductors. Brief discussion of superconductivity in SrPt2As2 is also presented.Comment: 5 pages, 4 figure

    On Measuring Condensate Fraction in Superconductors

    Full text link
    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high temperature superconductors come very close to achieving this goal.Comment: 4 pages, 1 eps figure, RevTex. A new possibility in the underdoped regime is added. Other corrections are mino

    Bilayer Splitting in the Electronic Structure of Heavily Overdoped Bi2Sr2CaCu2O8+d

    Full text link
    The electronic structure of heavily overdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} is investigated by angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in this two-plane system is observed in both normal and superconducting states, which qualitatively agrees with the bilayer Hubbard model calculations. The maximum bilayer energy splitting is about 88 meV for the normal state feature, while it is only about 20 meV for the superconducting peak. This anomalous behavior cannot be reconciled with the quasiparticle picture.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    c-axis magnetotransport in CeCoIn5_{5}

    Full text link
    We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5_{5} at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T<T < 10 K transport measurements show that the zero-field resistivity ρc\rho_{c} changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5_{5} for fields applied parallel to the c-axis is negative and scales as B/(T+T)B/(T+T^{*}) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T2T^{*} \sim 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B2/TB{^2}/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B >> Bc2_{c2} restores Fermi-liquid behavior in ρc(T)\rho_{c}(T) at TT less than 130 mK. Analysis of the T2T{^2} resistivity coefficient's field-dependence suggests that the QCP in CeCoIn5_{5} is located \emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-TT c-axis transport of CeCoIn5_{5} exhibits features typical for a heavy fermion system, low-TT transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5_{5} crystal structure
    corecore