38 research outputs found
Evolution of cooperation driven by zealots
Recent experimental results with humans involved in social dilemma games
suggest that cooperation may be a contagious phenomenon and that the selection
pressure operating on evolutionary dynamics (i.e., mimicry) is relatively weak.
I propose an evolutionary dynamics model that links these experimental findings
and evolution of cooperation. By assuming a small fraction of (imperfect)
zealous cooperators, I show that a large fraction of cooperation emerges in
evolutionary dynamics of social dilemma games. Even if defection is more
lucrative than cooperation for most individuals, they often mimic cooperation
of fellows unless the selection pressure is very strong. Then, zealous
cooperators can transform the population to be even fully cooperative under
standard evolutionary dynamics.Comment: 5 figure
Mesoscopic structure conditions the emergence of cooperation on social networks
We study the evolutionary Prisoner's Dilemma on two social networks obtained
from actual relational data. We find very different cooperation levels on each
of them that can not be easily understood in terms of global statistical
properties of both networks. We claim that the result can be understood at the
mesoscopic scale, by studying the community structure of the networks. We
explain the dependence of the cooperation level on the temptation parameter in
terms of the internal structure of the communities and their interconnections.
We then test our results on community-structured, specifically designed
artificial networks, finding perfect agreement with the observations in the
real networks. Our results support the conclusion that studies of evolutionary
games on model networks and their interpretation in terms of global properties
may not be sufficient to study specific, real social systems. In addition, the
community perspective may be helpful to interpret the origin and behavior of
existing networks as well as to design structures that show resilient
cooperative behavior.Comment: Largely improved version, includes an artificial network model that
fully confirms the explanation of the results in terms of inter- and
intra-community structur
Social Experiments in the Mesoscale: Humans Playing a Spatial Prisoner's Dilemma
Background: The evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner’s Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues. Methods and Findings: We have designed an experiment to test the emergence of cooperation when humans play Prisoner’s Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players ’ behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations. Conclusions: In our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a ‘‘moody’
As If or What? - Expectations and Optimization in a Simple Macroeconomic Environment
In this paper we report the results of a laboratory experiment, in which we observed the behavior of agents in a simple macroeconomic setting. The structure of the economy was only partially known to the players which is a realistic feature of our experiment. We investigate whether subjects manage to approach optimal behavior even if they lack important information. Furthermore, we analyze subjects' perceptions of the model and whether their behavior is consistent with their perceptions. The full information model predicts changes of employment correctly, but not the level of employment. In the aggregate, subjects have correct perceptions, although individual perceptions are biased. We finally show that deviations from the full information solution are due to optimization failures than than misperceptions
Local and global interactions in an evolutionary resource game
Conditions for the emergence of cooperation in a spatial common-pool resource game are studied. This combines in a unique way local and global interactions. A fixed number of harvesters are located on a spatial grid. Harvesters choose among three strategies: defection, cooperation, and enforcement. Individual payoffs are affected by both global factors, namely, aggregate harvest and resource stock level, and local factors, such as the imposition of sanctions on neighbors by enforcers. The evolution of strategies in the population is driven by social learning through imitation, based on local interaction or locally available information. Numerous types of equilibria exist in these settings. An important new finding is that clusters of cooperators and enforcers can survive among large groups of defectors. We discuss how the results contrast with the non-spatial, but otherwise similar, game of Sethi and Somanathan (American Economic Review 86(4):766–789, 1996)
The Supply Side Determinants of Territory and Conflict
What determines the geographic extent of territory? We microfound and extend Boulding’s “Loss of Strength Gradient” to predict the extensive and intensive margins of conflict across space. We show how economies of scale in the production of violence and varying costs of projecting violence at a distance combine to affect the geographic distribution of conflict and territory. We test and probe the boundaries of this model in an experiment varying the fixed costs of conflict entry. As predicted, higher fixed costs increase the probability of exclusive territories; median behavior closely tracks equilibrium predictions in all treatments
Individual strategy update and emergence of cooperation in social networks
In this paper, we critically study whether social networks can explain the emergence of cooperative behavior. We carry out an extensive simulation program in which we study the most representative social dilemmas. For the Prisoner’s Dilemma, it turns out that the emergence of cooperation is very dependent on the micro-dynamics. On the other hand, network clustering mostly facilitates global cooperation in the Stag Hunt game, whereas degree heterogeneity promotes cooperation in Snowdrift dilemmas. Thus, social networks do not promote cooperation in general, because the macrooutcome is not robust under change of dynamics. Therefore, having specific applications of interest in mind is crucial to include the appropriate microdetails in a good model.This work has been supported by Ministerio de Ciencia e Innovación (Spain) through grant MOSAICO, and by Comunidad de Madrid (Spain) through grant MODELICO-CM.Publicad
The emergence of inequality in social groups: network structure and institutions affect the distribution of earnings in cooperation games
From small communities to entire nations and society at large, inequality in wealth, social status, and power is one of the most pervasive and tenacious features of the social world. What causes inequality to emerge and persist? In this study, we investigate how the structure and rules of our interactions can increase inequality in social groups. Specifically, we look into the effects of four structural conditions—network structure, network fluidity, reputation tracking, and punishment institutions—on the distribution of earnings in network cooperation games. We analyze 33 experiments comprising 96 experimental conditions altogether. We find that there is more inequality in clustered networks compared to random networks, in fixed networks compared to randomly rewired and strategically updated networks, and in groups with punishment institutions compared to groups without. Secondary analyses suggest that the reasons inequality emerges under these conditions may have to do with the fact that fixed networks allow exploitation of the poor by the wealthy and clustered networks foster segregation between the poor and the wealthy, while the burden of costly punishment falls onto the poor, leaving them poorer. Surprisingly, we do not find evidence that inequality is affected by reputation in a systematic way but this could be because reputation needs to play out in a particular network environment in order to have an effect. Overall, our findings suggest possible strategies and interventions to decrease inequality and mitigate its negative impact, particularly in the context of mid- and large-sized organizations and online communities