297 research outputs found

    Photoluminescence upconversion at GaAs/InGaP2 interfaces driven by a sequential two-photon absorption mechanism

    Get PDF
    This paper reports on the results of an investigation into the nature of photoluminescence upconversion at GaAs/InGaP2 interfaces. Using a dual-beam excitation experiment, we demonstrate that the upconversion in our sample proceeds via a sequential two-photon optical absorption mechanism. Measurements of photoluminescence and upconversion photoluminescence revealed evidence of the spatial localization of carriers in the InGaP2 material, arising from partial ordering of the InGaP2. We also observed the excitation of a two-dimensional electron gas at the GaAs/InGaP2 heterojunction that manifests as a high-energy shoulder in the GaAs photoluminescence spectrum. Furthermore, the results of upconversion photoluminescence excitation spectroscopy demonstrate that the photon energy onset of upconversion luminescence coincides with the energy of the two-dimensional electron gas at the GaAs/InGaP2 interface, suggesting that charge accumulation at the interface can play a crucial role in the upconversion process

    Combining Δ-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light.

    Get PDF
    We investigate media which exhibits epsilon-near-zero (ENZ) behavior while simultaneously sustaining stopped light energy bands which contain multiple points of zero group velocity (ZGV). This allows the merging of state-of-the-art phenomena that was hitherto attainable in media that demonstrated these traits separately. Specifically, we demonstrate the existence of Ferrell-Berreman (FB) modes within frequency bands bounded by points of ZGV with the goal to improve the coupling efficiency and localization of light in the media. The FB mode is formed within a double layer, thin-film stack where at subwavelength thicknesses the structure exhibits a very low reflection due to ENZ behavior. In addition, the structure is engineered to promote a flattened frequency dispersion with a negative permittivity able to induce multiple points of ZGV. For proof-of-concept, we propose an oxide-semiconductor-oxide-insulator stack and discuss the useful optical properties that arise from combining both phenomena. A transfer matrix (TM) treatment is used to derive the reflectivity profile and dispersion curves. Results show the ability to reduce reflection below 0.05% in accordance with recent experimental data while simultaneously exciting a polariton mode exhibiting both reduced group velocity and group velocity dispersion (GVD)

    Coulomb effects on the photoexcited quantum dynamics of electrons in a plasmonic nanosphere

    Get PDF
    With recent experiments investigating the optical properties of progressively smaller plasmonic particles, quantum effects become increasingly more relevant, requiring a microscopic description. Using the density matrix formalism we analyze the photoexcited few-electron dynamics of a small plasmonic nanosphere. Following the standard derivation of the bulk plasmon we particularly aim at elucidating the role of the Coulomb interaction. Calculating the dielectric susceptibility spectrum in the linear optical response we find discrete resonances resulting from a collective response mediated by the Coulomb interaction between the electrons. In the nonlinear regime, the occupations of the system exhibit oscillations between the interacting eigenstates. Our approach provides an ideal platform to study and explain nonlinear and quantum plasmonics, revealing that the photoexcited dynamics of plasmonic nanospheres has similarities with and combines characteristics of both the well-known two-level Rabi dynamics and the collective many-electron behavior typical of plasmons

    Limiting efficiencies for intermediate band solar cells with partial absorptivity: the case for a quantum ratchet

    No full text
    The intermediate band solar cell (IBSC) concept aims to improve upon the Shockley–Queisser limit for single bandgap solar cells by also making use of below bandgap photons through sequential absorption processes via an intermediate band (IB). Current proposals for IBSCs suffer from low absorptivity values for transitions into and out of the IB. We therefore devise and evaluate a general, implementation‐independent thermodynamic model for an absorptivity‐constrained limiting efficiency of an IBSC to study the impact of absorptivity limitations on IBSCs. We find that, due to radiative recombination via the IB, conventional IBSCs cannot surpass the Shockley–Queisser limit at an illumination of one Sun unless the absorptivity from the valence band to the IB and the IB to the conduction band exceeds ≈36%. In contrast, the introduction of a quantum ratchet into the IBSC to suppress radiative recombination can enhance the efficiency of an IBSC beyond the Shockley–Queisser limit for any value of the IB absorptivity. Thus, the quantum ratchet could be the vital next step to engineer IBSCs that are more efficient than conventional single‐gap solar cells

    Chemical constituents of the root wood of Erythrina sacleuxii and determination of the absolute configuration of suberectin

    Get PDF
    Phytochemical investigation on the root wood of Erythrina sacleuxii (Leguminosae) led to the isolation of nine secondary metabolites (1-9). Compound 1 was isolated from the genus Erythrina for the first time. The pure compounds were identified on the basis of comprehensive spectroscopic and spectrometric analyses, while their absolute configurations were determined based on chiroptical measurements. Compounds 5 and 6 showed weak antifungal activity against Pyricularia oryzae with MIC values of 20 Â”g/mL.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 135-140. DOI: https://dx.doi.org/10.4314/bcse.v34i1.1

    Photoluminescence upconversion at interfaces driven by a sequential two-photon absorption mechanism

    Get PDF
    This paper reports on the results of an investigation into the nature of photoluminescence upconversion at GaAs/InGaP2 interfaces. Using a dual-beam excitation experiment, we demonstrate that the upconversion in our sample proceeds via a sequential two-photon optical absorption mechanism. Measurements of photoluminescence and upconversion photoluminescence revealed evidence of the spatial localization of carriers in the InGaP2 material, arising from partial ordering of the InGaP2. We also observed the excitation of a two-dimensional electron gas at the GaAs/InGaP2 heterojunction that manifests as a high-energy shoulder in the GaAs photoluminescence spectrum. Furthermore, the results of upconversion photoluminescence excitation spectroscopy demonstrate that the photon energy onset of upconversion luminescence coincides with the energy of the two-dimensional electron gas at the GaAs/InGaP2 interface, suggesting that charge accumulation at the interface can play a crucial role in the upconversion process

    Semiconductor nanostructure quantum ratchet for high efficiency solar cells

    Full text link
    Conventional solar cell efficiencies are capped by the ~31% Shockley–Queisser limit because, even with an optimally chosen bandgap, some red photons will go unabsorbed and the excess energy of the blue photons is wasted as heat. Here we demonstrate a “quantum ratchet” device that avoids this limitation by inserting a pair of linked states that form a metastable photoelectron trap in the bandgap. It is designed both to reduce non-radiative recombination, and to break the Shockley–Queisser limit by introducing an additional “sequential two photon absorption” (STPA) excitation channel across the bandgap. We realise the quantum ratchet concept with a semiconductor nanostructure. It raises the electron lifetime in the metastable trap by ~104, and gives a STPA channel that increases the photocurrent by a factor of ~50%. This result illustrates a new paradigm for designing ultra-efficient photovoltaic devices

    Seminiferous tubule transfection in vitro to define post-meiotic gene regulation

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.rbej.com/content/7/1/67Background: Post-meiotically expressed genes in the testis are essential for the proper progression of spermatogenesis, and yet, aside from the construction of individual transgenic mice using specific promoters to drive reporter plasmids, there are only very limited possibilities for relevant and quantitative analysis of gene promoters. This is due to the special nature of post-meiotic haploid cells, which to date are not represented in any appropriate cell-lines. This article reports the development of novel methodology using isolated and cultured rat seminiferous tubules in a multiwell format, into which promoter-reporter constructs can be introduced by a combination of microinjection and electroporation. Methods: Culture conditions were developed which allowed the continued incubation of isolated rat seminiferous tubules for up to 48 h without obvious cell death and loss of post-meiotic cells. Transfection of intact seminiferous tubules by microinjection and electroporation was optimized to achieve high expression efficiencies of control plasmids, using either fluorescent protein or luciferase as reporters, thereby allowing both morphological as well as quantitative assessment. Results: Successful transfection was achieved into all cell types except for mature spermatozoa. However, there appeared to be only limited cell-type specificity for the promoters used, even though these had appeared to be specific when used in transgenic animals. Conclusion: We have devised a methodology which allows relatively high throughput analysis of post-meiotic gene promoters into primary cells of intact seminiferous tubules. An apparent lack of cell-type specificity suggests that the gene fragments used do not contain sufficient targeting information, or that the transient episomal expression of the constructs does not encourage appropriate expression specificity. The results also highlight the doubtful interpretation of many studies using heterologous transfection systems to analyse post-meiotically expressed genes.Sandra Danner, Christiane Kirchhoff and Richard Ivel
    • 

    corecore