54 research outputs found

    Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

    Get PDF
    Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment

    Interspecific Hybridization Increased in Congeneric Flatfishes after the Prestige Oil Spill

    Get PDF
    Marine species with relatively low migratory capacity are threatened by habitat alterations derived from human activities. In November 2002 the tanker Prestige sank off the Spanish northwest coast releasing 70,000 tons of fuel and damaging biota in the area. Despite efforts to clean the damaged areas, fuel remnants have affected marine species over the last nine years. This study is focused on two flatfish, Lepidorhombus boscii (four-spotted megrim) and L. whiffiagonis (megrim), whose spawning areas are located at the edge of the continental platform. We have analyzed megrim samples from North Spanish and French waters obtained before and after the oil spill. Genotypes at the nuclear marker 5S rDNA indicate a significant increase in interspecific hybridization after the Prestige accident, likely due to forced spawning overlap. The mitochondrial D-Loop region was employed for determining the direction of hybrid crosses, which were most frequently L. boscii female x L. whiffiagonis male. Reduced ability of L. boscii females to select conspecific mates would explain such asymmetric hybridization. To our knowledge this is the first time that increased hybridization between fish species can be associated to an oil spill. These results illustrate the potential long-term effect of petrol wastes on wild fish species

    Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair

    Get PDF
    The mouse hair coat comprises protective β€œprimary” and thermo-regulatory β€œsecondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda

    Contraindications of sentinel lymph node biopsy: Áre there any really?

    Get PDF
    BACKGROUND: One of the most exciting and talked about new surgical techniques in breast cancer surgery is the sentinel lymph node biopsy. It is an alternative procedure to standard axillary lymph node dissection, which makes possible less invasive surgery and side effects for patients with early breast cancer that wouldn't benefit further from axillary lymph node clearance. Sentinel lymph node biopsy helps to accurately evaluate the status of the axilla and the extent of disease, but also determines appropriate adjuvant treatment and long-term follow-up. However, like all surgical procedures, the sentinel lymph node biopsy is not appropriate for each and every patient. METHODS: In this article we review the absolute and relative contraindications of the procedure in respect to clinically positive axilla, neoadjuvant therapy, tumor size, multicentric and multifocal disease, in situ carcinoma, pregnancy, age, body-mass index, allergies to dye and/or radio colloid and prior breast and/or axillary surgery. RESULTS: Certain conditions involving host factors and tumor biologic characteristics may have a negative impact on the success rate and accuracy of the procedure. The overall fraction of patients unsuitable or with multiple risk factors that may compromise the success of the sentinel lymph node biopsy, is very small. Nevertheless, these patients need to be successfully identified, appropriately advised and cautioned, and so do the surgeons that perform the procedure. CONCLUSION: When performed by an experienced multi-disciplinary team, the SLNB is a highly effective and accurate alternative to standard level I and II axillary clearance in the vast majority of patients with early breast cancer

    Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    Get PDF
    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo

    From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing

    Get PDF
    Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed

    The role of tenascin-C in tissue injury and tumorigenesis

    Get PDF
    The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer
    • …
    corecore