45 research outputs found

    Following the genes: a framework for animal modeling of psychiatric disorders

    Get PDF
    The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans

    Increased Sensory Processing Atypicalities in Parents of Multiplex ASD Families Versus Typically Developing and Simplex ASD Families

    Get PDF
    Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54 parents from multiplex ASD families (MPX). After controlling for gender and presence of mental disorders, results showed that MPX parents significantly differed from P-TD parents in all four subscales of the AASP. Differences between SPX and MPX parents reached significance in the Sensory Sensitivity subscale and also in subsequent modality-specific analyses in the auditory and visual domains. Our finding that parents with high genetic liability for ASD (i.e., MPX) had more sensory processing atypicalities than parents with low (i.e., SPX) or no (i.e., P-TD) ASD genetic liability suggests that sensory processing atypicalities may contribute to the genetic susceptibility for ASD

    Oxytocin

    No full text

    VoICE: A semi-automated pipeline for standardizing vocal analysis across models

    No full text
    The study of vocal communication in animal models provides key insight to the neurogenetic basis for speech and communication disorders. Current methods for vocal analysis suffer from a lack of standardization, creating ambiguity in cross-laboratory and cross-species comparisons. Here, we present VoICE (Vocal Inventory Clustering Engine), an approach to grouping vocal elements by creating a high dimensionality dataset through scoring spectral similarity between all vocalizations within a recording session. This dataset is then subjected to hierarchical clustering, generating a dendrogram that is pruned into meaningful vocalization “types” by an automated algorithm. When applied to birdsong, a key model for vocal learning, VoICE captures the known deterioration in acoustic properties that follows deafening, including altered sequencing. In a mammalian neurodevelopmental model, we uncover a reduced vocal repertoire of mice lacking the autism susceptibility gene, Cntnap2. VoICE will be useful to the scientific community as it can standardize vocalization analyses across species and laboratories

    3D visualization of the regional differences

    No full text
    Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response
    corecore