143 research outputs found

    Monte-Carlo calculation of the lateral Casimir forces between rectangular gratings within the formalism of lattice quantum field theory

    Full text link
    We propose a new Monte-Carlo method for calculation of the Casimir forces. Our method is based on the formalism of noncompact lattice quantum electrodynamics. This approach has been tested in the simplest case of two ideal conducting planes. After this the method has been applied to the calculation of the lateral Casimir forces between two ideal conducting rectangular gratings. We compare our calculations with the results of PFA and "Optimal" PFA methods.Comment: 12 pages, 6 figures, accepted in Int. J. Mod. Phys.

    Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids

    Get PDF
    Generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids are considered in this work. We assume that, in the momentum equation, the diffusion and relaxation terms are described by two distinct power-laws. Moreover, we assume that the momentum equation is perturbed by an extra term, which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. For the associated initial-boundary value problem, we study the existence of weak solutions as well as the large time behavior of the solutions.Portuguese Foundation for Science and Technology: UID/MAT/04561/2019info:eu-repo/semantics/publishedVersio
    • …
    corecore