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Abstract. Generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible
fluids are considered in this work. We assume that, in the momentum equation, the diffusion
and relaxation terms are described by two distinct power-laws. Moreover, we assume that the
momentum equation is perturbed by an extra term, which, depending on whether its signal is
positive or negative, may account for the presence of a source or a sink within the system. For
the associated initial-boundary value problem, we study the existence of weak solutions as well
as the large time behavior of the solutions.

1. Introduction
The problem we study in this work is motivated by the mathematical modelling of viscoelastic
materials. Viscoelasticity is the property of a material that, under stress and deformation,
exhibits both viscous and elastic characteristics. Simplest constitutive relations describing the
behavior of these materials go back to the works by Kelvin [1] and Maxwell [2], and are usually
obtained by combining Hook’s law of linear elasticity with Newton’s law of viscosity. Departing
from the Kelvin stress-strain relation, Voigt [3] has derived a system of equations that govern
the behavior of elastic solids with viscous properties, which is known today as the Kelvin-Voigt
equations. Later on, Oskolkov [4] derived a similar system of governing equations but for the
description of homogeneous and incompressible fluids with elastic properties, to which he has
also given the name of Kelvin-Voigt equations. By the same time, Pavlovsky [5] has already used
a sort of Kelvin-Voigt equations to model weakly concentrated water-polymer mixtures. The
same designation for systems of equations, which although similar, describe different phenomena,
can sometimes lead to misinterpretations. To avoid any ambiguity, we must always keep in mind
for what Deborah number are the considered Kelvin-Voigt equations associated with. Deborah
number is the ratio of the relaxation time of a material to the observation or experimental
time, and therefore it is usually used to estimate the memory of materials. Low Deborah
numbers always indicate fluid-like behavior, whereas high Deborah numbers means solid-like
response. In this work, we consider a very general model that can be used for the description of
nonhomogeneous and incompressible fluids with viscoelastic properties. The problem we shall
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study here is the following: given the initial velocity field v0, the initial density ρ0 and the forces
field f , to find the velocity field v, the pressure π and the density ρ satisfying to

∂(ρv)

∂ t
+ div(ρv ⊗ v) =

ρ f −∇π + div

(
µ|D(v)|p−2D(v) + κ|D(v)|q−2∂D(v)

∂ t

)
+ γ|v|m−2v,

(1.1)

∂ρ

∂ t
+ div(ρv) = 0, div v = 0. (1.2)

in a general cylinder QT := Ω× (0, T ), with lateral boundary ΓT := ∂Ω× (0, T ), where Ω ⊂ Rd,
with d ≥ 2, is a bounded domain with its boundary denoted by ∂Ω, and T > 0. Here κ
denotes the relaxation time and µ is the fluid viscosity, both of which are considered to be
positive constants. Moreover, the exponents p, q and m are positive constants satisfying to
p, q, m ∈ (1,∞) and γ is assumed to be a constant with no predefined sign. We supplement
the system (1.1)-(1.2) with the following initial and boundary conditions

ρv = ρ0v0, ρ = ρ0 in Ω, when t = 0, (1.3)

v = 0 on ΓT . (1.4)

In the sequel, we shall refer to (1.1)-(1.2) as the generalized Kelvin-Voigt equations for
nonhomogeneous and incompressible fluids, underlying, therefore, that the phenomenon
described by these equations, or by any of its simplifications, has an associated low Deborah
number. This problem is very general and therefore encompasses many other situations of fluid
flows. In particular, the extra term γ|v|m−2v accounts for a sink or a source within the system,
depending if γ < 0 or γ > 0, respectively. If γ = 0 and p = q = 2 in the momentum equation
(1.1), we recover the Kelvin-Voigt model for nonhomogeneous and incompressible fluids, whose
particular case of constant ρ was studied by Oskolkov [4] and Ladyzhenskaya [6]. On the other
hand, equations (1.1)-(1.2), in the case of κ = 0, p = 2 and γ = 0, have been used since the
1960s to describe nonhomogeneous flows of viscous and incompressible fluids (see e.g. Antontsev
et al. [7, 8, 9]). The case of κ = 0 and γ = 0, but with the possibility of p 6= 2 in (1.1), have
been studied by Zhikov and Pastukhova [10, 11]. Mathematical questions involving Kelvin-
Voigt’s equations for homogeneous incompressible viscous fluids, i.e. the case of κ 6= 0, γ = 0
and p = q = 2 in (1.1), and constant ρ, were considered by Oskolkov [4] and by Zvyagin and
his collaborators [12]. More recently, Antontsev and Khompysh [13, 14] have addressed some
mathematical issues for the Kelvin-Voigt equations in the case of homogeneous fluids and for
general p. The unique solvability of the homogeneous Kelvin-Voigt equations with anisotropic
diffusion, relaxation and damping was considered by Antontsev et al. [15]. To the authors best
knowledge, Kelvin-Voigt equations for nonhomogeneous incompressible fluids have not yet been
considered in previous works.

Definition 1.1. Let d ≥ 2, 1 < q, p, m <∞ and assume that f ∈ L2(QT ). A pair of functions
(v, ρ) is a weak solution to the problem (1.1)-(1.4), if:

(i) v ∈ L∞(0, T ; H ∩Vq) ∩ Lp(0, T ; Vp) ∩ Lm(QT );

(ii) ρ > 0 a.e. in QT , ρ ∈ C([0, T ];Lλ(Ω)) for all λ ∈ [1,∞) and ρ|v|2 ∈ L∞(0, T ;L1(Ω));

(iii) v(0) = v0 and ρ(0) = ρ0, with ρ0 ≥ 0 a.e. in Ω;
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(iv) For every ϕ ∈ V there holds for a.a. t ∈ [0, T ]

d

dt

(∫
Ω
ρ(t)v(t) ·ϕ dx +

κ
q − 1

∫
Ω
|D(v(t))|q−2D(v(t)) : D(ϕ) dx

)
+

µ

∫
Ω
|D(v(t))|p−2D(v(t)) : D(ϕ) dx +

∫
Ω

(ρ(t)v(t) ·∇)v(t) ·ϕ dx

=

∫
Ω
ρ(t)f(t) ·ϕ dx + γ

∫
Ω
|v(t)|m−2v(t) ·ϕ dx.

(v) For every φ ∈ C∞0 (Ω) there holds for a.a. t ∈ [0, T ]

d

dt

∫
Ω
ρ(t)φdx +

∫
Ω
ρ(t)v(t) ·∇φdx = 0.

We address the reader to the monographs [7, 9] for the definitions and main notations of the
function spaces used throughout the paper. We just fix the notations

V := {v ∈ C∞0 (Ω) : div v = 0},
H := {closure of V in the norm of L2(Ω)},
Vp := {closure of V in the norm of W1,p(Ω)}.

If p = 2, we denote Vp simply by V.

2. Main results
First we shall consider the case

γ ≤ 0 and q = 2. (2.1)

With respect to assumption q = 2, it should be mentioned that existence results for generalized
Kelvin-Voigt equations (with q 6= 2) are completely open. Despite the fact that existence of
solutions is proved only in the case of q = 2, many estimates and integral relations are proved
for the case q 6= 2, since they are used to prove the large time behavior. For the results we aim
to establish here, let us define the quantity

s := max{q, p},

which will resume to s := max{2, p} in the case q = 2.

Theorem 2.1 (Global existence: γ ≤ 0). Let M1 and M2, with M1 ≤ M2, be two positive
constants such that

0 < M1 := inf
x∈Ω

ρ0(x) ≤ ρ0(x) ≤ sup
x∈Ω

ρ0(x) =: M2 <∞ ∀ x ∈ Ω, (2.2)

and let

v0 ∈ V ∩Vp ∩ Lm(Ω), (2.3)

f ∈ L2(QT ). (2.4)

Assume, in addition to (2.1), (2.2) and (2.3)-(2.4), that one of the following alternatives is
fulfilled,

2 ≤ d ≤ 4 and p > 1, (2.5)

d ≥ 3 and p ≥ d

2
,

d ≤ m and γ 6= 0. (2.6)
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If

s >
4d

d+ 4
, (2.7)

then the problem (1.1)-(1.4) has, at least, a weak solution (v, ρ) in the sense of Definition 1.1
in the cylinder QT .
Moreover, the weak solutions to the problem (1.1)-(1.4) satisfy the following estimates,

0 < M1 ≤ ρ(x, t) ≤M2 <∞ ∀ (x, t) ∈ QT (2.8)

sup
t∈[0,T ]

(
‖v(t)‖22,Ω + ‖∇v(t)‖22,Ω

)
+ ‖∇v‖pp,QT + |γ|‖v‖mm,QT

≤ C1

(
‖v0‖22,Ω + ‖∇v0‖22,Ω + ‖f‖22,QT

)
,

sup
t∈[0,T ]

(
‖∇v(t)‖pp,Ω + |γ|‖v(t)‖mm,Ω

)
+ ‖vt‖22,QT + ‖∇vt‖22,QT

≤ C2

(
‖∇v0‖pp,Ω + |γ|‖v0‖mm,Ω + ‖f‖22,QT + 1

)
,

(2.9)

where C1 and C2 are positive constants.

We are now interested in existence results to the problem (1.1)-(1.4) in the case of

q = 2 and γ > 0. (2.10)

Theorem 2.2 (Global existence: γ > 0). Assume that (2.2), (2.3)-(2.4) and (2.10) hold, and
that one of the alternatives written in (2.5)-(2.6) is fulfilled. In addition, assume that (2.7)
holds as well. If one of the following conditions is verified,

m ≤ 2,

2 < m < p, (2.11)

and if, in the case of (2.11), we additionally have

2(m− 1) ≤ p∗, (2.12)

then the problem (1.1)-(1.4) has, at least, a weak solution (v, ρ) in the sense of Definition 1.1
in the cylinder QT .
Moreover, this weak solution satisfies the estimates (2.8)-(2.9) with γ = 0.

Theorem 2.3 (Local existence: γ > 0). Assume that (2.2)-(2.4) and (2.10) hold. If one of the
following conditions hold,

2 < m ≤ 2∗,

2 < p ≤ m < p

(
1 +

2

d

)
, (2.13)

and if in the case of (2.13) there additionally holds (2.12), then there exists Tmax ∈ (0, T ) such
that the problem (1.1)-(1.4) has, at least, a weak solution (v, ρ) in the sense of Definition 1.1
in the cylinder QTmax. Moreover, this weak solution also satisfies the estimates (2.8)-(2.9) with
γ = 0, but in the cylinder Qt, with t < Tmax.
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The common idea to the proofs of Theorems 2.1, 2.2 and 2.3 is the following.
We construct a solution to the problem (1.1)-(1.3) as a limit of the Galerkin approximations

vn(x, t) =

n∑
k=1

cnk(t)ψk(x), ψk ∈ Vn, and ρn(x, t), (2.14)

where {ψk}k∈N is an orthonormal family in L2(Ω) formed by functions of V whose linear
combinations are dense in V∩Vp∩Lm(Ω). The functions cn1 (t), . . . , cnn(t) are obtained from the
following Cauchy problem for the system of ordinary differential equations

A
dc

dt
= b, c(0) = c0 = (cn1 (0), . . . , cnn(0)), (2.15)

where A = {Anjk}nj,k=1, c = {cnk}nk=1, b = {bnj }nj=1, with

Anjk(t) :=

∫
Ω
ρnψj ·ψkdx + κ

∫
Ω
|D(vn(t))|q−2D(ψk) : ∇ψj dx,

bnj (t) :=

∫
Ω
ρnf(t) ·ψj dx + γ

∫
Ω
|vn(t)|m−2vn(t) ·ψj dx−

∫
Ω
ρn(t) (vn(t) ·∇) vn(t) ·ψj dx

− µ
∫

Ω
|D(vn(t))|p−2D(vn(t)) : ∇ψj dx,

The density approximations ρn satisfy the following Cauchy problem,

∂ρn
∂ t

+ vn ·∇ρn = 0, ρn(0) = ρ0 in Ω. (2.16)

For simplicity, firstly we assume that ρ0 ∈ C1(Ω). Then we have

ρn(x, t) = ρ0(yn(τ,x, t)∣∣τ=0
) (2.17)

where yn is the solution to the Cauchy problem

dyn
dt

= vn(yn, τ), yn∣∣τ=t
= x.

This problem has a unique solution yn for vn given by (2.14) with cnk ∈ C([0, T ]). Moreover,
according to (2.2) and (2.17), one has

0 < M1 = inf
x∈Ω

ρ0(x) ≤ ρn(x, t) ≤ sup
x∈Ω

ρ0(x) = M2 <∞ ∀ (x, t) ∈ QT .

We prove that the problem formed by (2.15) and (2.16) has, at least, a solution c in a
neighborhood, say (0, T0), with T0 > 0, of the initial condition.
Next, we derive a priori estimates similar to those specified in Theorem 2.1 which do not depend
on the number n. Under the conditions of Theorems 2.1 and 2.2, these estimates are valid for any
finite interval [0, T ). In the case of Theorem 2.3, the estimates are valid only for a local interval
[0, t), with t < Tmax. Then using compactness arguments together with the monotonicity of
the operator µ|D(v)|p−2D, we can extract a convergent subsequence of approximation solutions.
Finally, we realize the passage to the limit as n → ∞. The obtained limit is a solution to the
problem (1.1)-(1.4) in the sense of Definition 1.1. In the case of Theorems 2.1 and 2.2, we have
a global solution, whereas for Theorem 2.3 we have a local solution.
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3. Large time behavior
In this section, we study the large time behavior properties of the weak solution to the problem
(1.1)-(1.4). Here, we also consider the open case q 6= 2, for which we assume the existence of,
at least, a weak solution (v, ρ) in the sense of Definition 1.1. Throughout this section, we shall
assume that

γ ≤ 0, v0 ∈ H ∩Vq. (3.1)

Let us define the functions

Φ(t) :=
1

2
‖
√
ρ(t) v(t)‖22,Ω +

κ
q
‖∇v(t)‖qq,Ω, (3.2)

Ψ(t) := µ‖∇v(t)‖pp,Ω + |γ|‖v(t)‖mm,Ω.

Let us now consider a weak solution (v, ρ) to the problem (1.1)-(1.4) in the sense of Definition 1.1
and let the function Φ(t) defined by (3.2) be bounded for all t ∈ [0,∞].
We establish the conditions for the solutions to the problem (1.1)-(1.4) to decay in time according
to the following power

α :=
p

min {2, q}
.

Theorem 3.1 (Polynomial decay). Let (v, ρ) be a weak solution to the problem (1.1)-(1.4) in
the sense of Definition 1.1 and assume that condition (3.1) holds. In addition, assume that

2d

d+ 2
≤ q ≤ p and α > 1.

(i) If f = 0 a.e. in QT and (2.1) holds, then there exists an independent of t positive constant
C such that

Φ(t) ≤ C (1 + t)−
1

α−1 ∀ t ≥ 0. (3.3)

(ii) If f 6= 0, but exist positive constants Cf and σ, with σ ≥ α′, such that

‖f(t)‖ss,Ω ≤ Cf (1 + t)−σ ∀ t ∈ [0, T ],

for s = p′ when (2.1) holds, or s = m′ when γ < 0 is holding, then there exists an
independent of t positive constant C such that

Φ(t) ≤ C (1 + t)−
α
α−1 ∀ t ≥ 0, (3.4)

where α′, p′ and m′ denote the Hölder conjugates of α, p and m.

Next we study the limit case of α = 1.

Theorem 3.2 (Exponential decay). Let (v, ρ) be a weak solution to the problem (1.1)-(1.4) in
the sense of Definition 1.1 and assume that condition (3.1) holds. In addition, assume that one
of the following conditions hold,

2d

d+ 2
≤ q = p ≤ 2 in the case of (2.1) holding,

q = p and m = 2 in the case γ < 0 holding.

(i) If f = 0 a.e. in QT and (2.1) holds, then there exists an independent of t positive constant
C such that

Φ(t) ≤ Φ(0)e−Ct ∀ t ≥ 0. (3.5)
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(ii) If f 6= 0 and ∫ ∞
0
‖f(τ)‖ss,Ωdτ <∞,

where s = p′ if (2.1) holds together with f ∈ Lp
′
(QT ) ∩ L2(Ω), or s = m′ if γ < 0 holds

together with f ∈ Lm
′
(QT )L2(Ω), then there exist constants C1 and C2 such that

Φ(t) ≤ e−C1t

(
Φ(0) + C2

∫ t

0
eC1τ‖f(τ)‖ss,Ωdτ

)
∀ t ≥ 0. (3.6)

The proofs of Theorems 3.1 and 3.2 follow by establishing the following nonlinear differential
inequality

Φ′(t) + C1Φα(t) ≤ C2‖f(t)‖ss,Ω (3.7)

for independent of t positive constants C1 and C2, where α = p
min{2,q} > 1 in the case of

Theorem 3.1, or α = 1 for Theorem 3.2, and where s = p′ if (2.1) holds, or s = m′ if it is
γ < 0 holding. Then, by using a suitable reasoning, we can show that (3.7) together with the
hypotheses of Theorems 3.1 and 3.2 imply the polynomial decays (3.3)-(3.4) and the exponential
decays (3.5)-(3.6), respectively.
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[8] Antontsev S N and Kazhikhov A V 1973 Mathematical study of flows of nonhomogeneous fluids Lecture
Notes (Novosibirsk State University) (in Russian)

[9] Antontsev S N, Kazhikhov A V and Monakhov V N 1990 Boundary Value Problems in Mechanics of
Nonhomogeneous Fluids (North Holland: Amsterdam)

[10] Zhikov V V and Pastukhova S E 2009 Dokl. Math. 80(1) 511–5
[11] Zhikov V V and Pastukhova S E 2009 Dokl. Math. 79(3) 403–7
[12] Zvyagin V G and Turbin M V 2010 J. Math. Sci. 168(2) 157–308
[13] Antontsev S N and Khompysh Kh 2017 J. Math. Anal. Appl. 456(1) 99–116
[14] Antontsev S N and Khompysh Kh 2017 J. Math. Anal. Appl. 446(2) 1255–73
[15] Antontsev S N, de Oliveira H B and Khompysh Kh 2019 J. Math. Anal. Appl. 473 1122–54


