165 research outputs found

    Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm1^{-1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/cc with a tensor polarized 2^2H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.Comment: 4 pages, 3 figure

    Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    Get PDF
    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter AedVA^V_{ed} was measured for the 2H(e,ep)n^2 \vec{\rm H}(\vec e,e^\prime p)n reaction for missing momenta up to 350 MeV/cc at a four-momentum transfer squared of 0.21 (GeV/c)2^2. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio

    Extraction of electromagnetic neutron form factors through inclusive and exclusive polarized electron scattering on polarized 3He target

    Get PDF
    Inclusive 3He(e,e') and exclusive 3He(e,e'n) processes with polarized electrons and 3He have been theoretically analyzed and values for the magnetic and electric neutron form factors have been extracted. In both cases the form factor values agree well with the ones extracted from processes on the deuteron. Our results are based on Faddeev solutions, modern NN forces and partially on the incorporation of mesonic exchange currents.Comment: 28 pages, 29 Postscript figure

    Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order

    Get PDF
    We calculate the imaginary parts of the isoscalar scalar and isovector electromagnetic form factors of the nucleon up to two-loop order in chiral perturbation theory. Particular attention is paid on the correct behavior of Im σN(t)\sigma_N(t) and Im GE,MV(t)G_{E,M}^V(t) at the two-pion threshold t0=4mπ2t_0=4 m_\pi^2 in connection with the non-relativistic 1/M-expansion. We recover the well-known strong enhancement near threshold originating from the nearby anomalous singularity at tc=4mπ2mπ4/M2=3.98mπ2t_c = 4m_\pi^2-m_\pi^4/M^2 = 3.98 m_\pi^2. In the case of the scalar spectral function Im σN(t)\sigma_N(t) one finds a significant improvement in comparison to the lowest order one-loop result. Higher order ππ\pi\pi-rescattering effects are however still necessary to close a remaining 20%-gap to the empirical scalar spectral function. The isovector electric and magnetic spectral functions Im GE,MV(t)G_{E,M}^V(t) get additionally enhanced near threshold by the two-pion-loop contributions. After supplementing their two-loop results by a phenomenological ρ\rho-meson exchange term one can reproduce the empirical isovector electric and magnetic spectral functions fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    Logarithmic corrections and soft photon phenomenology in the multipole model of the nucleon form factors

    Full text link
    We analyzed the presently available experimental data on nucleon electromagnetic form factors within a multipole model based on dispersion relations. A good fit of the data is achieved by considering the coefficients of the multipole expansions as logarithmic functions of the momentum transfer squared. The superconvergence relations, applied to this coefficients, makes the model agree with unitary constraints and pQCD asymptotics for the Dirac and Pauli form factors. The soft photon emission is proposed as a mechanism responsible for the difference between the Rosenbluth, polarization and beam--target--asymmetry data. It is shown, that the experimentally measured cross sections depend not only on the Dirac and Pauli form factors, but also on the average number of the photons emitted. For proton this number is shown to be different for different types of experimental measurements and then estimated phenomenologically. For neutron the same mechanism predicts, that the data form different types of experiments must coincide with high accuracy. A joint fit of all the experimental data reproduce the Q2Q^2-dependence with the accuracy χ2/dof=0.86\chi^2/dof=0.86. Predictions of the model, that 1) the ratios of the proton form factors GE/GMG_E/G_M are different for Rosenbluth, polarization and beam--target--asymmetry experiments and 2) similar ratios are nearly the same for neutron, can be used for experimental verification of the model.Comment: 14 pages in 2-column format, 4 figures, references added, typos corrected, minor changes in the text, accepted in Eur. Phys. Journal

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    A retrospective analysis of noise-induced hearing loss in the Dutch construction industry

    Get PDF
    Purpose Noise exposure is an important and highly prevalent occupational hazard in the construction industry. This study examines hearing threshold levels of a large population of Dutch construction workers and compares their hearing thresholds to those predicted by ISO-1999. Methods In this retrospective study, medical records of periodic occupational health examinations of 29,644 construction workers are analysed. Pure-tone audiometric thresholds of noise-exposed workers are compared to a non-exposed control group and to ISO-1999 predictions. Regression analyses are conducted to explore the relationship between hearing loss and noise intensity, noise exposure time and the use of hearing protection. Results Noise-exposed workers had greater hearing losses compared to their non-noise-exposed colleagues and to the reference population reported in ISO-1999. Noise exposure explained only a small proportion of hearing loss. When the daily noise exposure level rose from 80 dB(A) towards 96 dB(A), only a minor increase in hearing loss is shown. The relation of exposure time and hearing loss found was similar to ISO-1999 predictions when looking at durations of 10 years or more. For the first decade, the population medians show poorer hearing than predicted by ISO-1999. Discussion Duration of noise exposure was a better predictor than noise exposure levels, probably because of the limitations in noise exposure estimations. In this population, noise-induced hearing loss was already present at the beginning of employment and increased at the same rate as is predicted for longer exposure duration

    A Measurement of the Electric Form Factor of the Neutron through d(e,en)p\vec{d}(\vec{e},e'n)p at Q2=0.5Q^2 = 0.5 (GeV/c)2^2

    Full text link
    We report the first measurement of the neutron electric form factor GEnG_E^n via d(e,en)p\vec{d}(\vec{e},e'n)p using a solid polarized target. GEnG_E^n was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, 15^{15}ND3_3. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find GEn=0.04632±0.00616(stat.)±0.00341(syst.)G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.) at Q2=0.495Q^2 = 0.495 (GeV/c)2^2.Comment: Latex2e 5 pages, 3 figure
    corecore