20 research outputs found

    Chilaiditi sign

    No full text

    Chilaiditi syndrome: an uncommon cause of dyspnoea

    No full text

    Chilaïditi sign, a diagnostic trap

    No full text

    Two novel mutations in CYP11B1 and modeling the consequent alterations of the translated protein in classic congenital adrenal hyperplasia patients

    No full text
    Mutations in the 11β-hydroxylase (CYP11B1) gene are the second leading cause of congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by adrenal insufficiency, virilization of female external genitalia, and hypertension with or without hypokalemic alkalosis. Molecular analysis of CYP11B1 gene in CAH patients with 11β-hydroxylase deficiency was performed in this study. Cycle sequencing of 9 exons in CYP11B1 was performed in 5 unrelated families with 11β-hydroxylase deficient children. Three-dimensional models for the normal and mutant proteins and their affinity to their known substrates were examined. Analysis of the CYP11B1 gene revealed two novel mutations, a small insertion in exon 7 (InsAG393) and a small deletion in exon 2 (DelG766), and three previously known missense mutations (T318M, Q356X, and R427H). According to docking results, the affinity of the protein to its substrates is highly reduced by these novel mutations. DelG766 has more negative impact on the protein in comparison to InsAG393. The novel mutations, InsAG393 and DelG766, change the folding of the protein and disrupt the enzyme's active site as it was measured in the protein modeling and substrate binding analysis. Molecular modeling and sequence conservation were predictive of clinical severity of the disease and correlated with the clinical diagnosis of the patients. © 2013 Springer Science+Business Media New York

    No role for glutathione S-transferase genotypes in Caucasian esophageal squamous cell or adenocarcinoma etiology: an European case-control study

    Get PDF
    Contains fulltext : 118871.pdf (publisher's version ) (Open Access)BACKGROUND: Identifying and monitoring high-risk patients can aid the prevention of esophageal cancer (EC). The interaction of environmental risk factor exposure and genetic susceptibility may contribute to the etiology of EC. Biotransformation enzymes such as Glutathione S-Transferases (GSTs ) detoxify mutagenic and genotoxic compounds and therefore control the rate of detoxification of carcinogens. Functional polymorphisms in the genes coding for GSTs alter their enzyme activity in vitro, and were reported to modify EC risk in Asians. We hypothesized that altered enzyme activity GST genotypes influence the susceptibility for esophageal adeno- (EAC) and squamous cell carcinoma (ESCC) in Caucasians. METHODS: We performed a case-control study including 440 Caucasian patients with EC and 592 healthy Caucasian controls matched for age and sex. Functional polymorphisms were selected and genotypes were determined in GST classes Alpha, Mu, Theta and Pi by means of polymerase chain reaction. Genotypes were classified into predicted high, intermediate and low enzyme activity categories based on in vitro activity data. The distribution of the activity genotypes were compared between patients with EAC or ESCC, and controls. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by logistic regression analyses. Gene-gene interactions were tested and for comparison purposes, the predicted low and intermediate activity genotypes were combined. Genotypes with similar risks for EAC or ESCC were combined and analyzed for multiplicative effects. RESULTS: Our analyses includes 327 patients with EAC and 106 patients with ESCC. Low or intermediate activity enzyme genotypes for GSTM1, GSTA1, GSTP1 I105V and A114V as well as for GSTT1, did not significantly modify the risk for ESCC or EAC in our Dutch population. CONCLUSION: Functional genotypes in GST genes are not involved in EAC or ESCC susceptibility in Caucasians, in contrast to results on ESCC from Asia or Africa
    corecore