20 research outputs found
Applicability and limitations of sensitivity analyses for wildlife management
Sensitivity analyses that assess the impact of changing vital rates on population growth have been widely used to guide conservation. If implemented with caution, they can provide guidance as to which management actions will optimize conservation outcomes. In this review, we first focus on the commonly used proportional sensitivity and elasticity analyses that change each vital rate by equal proportions, to assess their importance for wildlife management. These types of analyses also feature potential pitfalls and limitations, including (1) Each vital rate is usually on a different scale. Without appropriate scaling this can result in a flawed evaluation of the importance of vital rates. (2) Vital rates rarely change at equal proportions in nature. This can bring about misguided management recommendations on the basis of vital rate changes that are unrealistic. (3) Proportional sensitivity analyses often do not reflect the feasibility and effectiveness of altering particular demographic parameters. Consequently, relying solely on proportional sensitivities or elasticities can lead to flawed evaluation of the importance of vital rates and thus prioritization of management options that are unrealistic or ineffective. We outline alternative approaches, which involve assessing the impact of threats, the relative demography of stable and declining populations, the effect of observable variation of vital rates on population viability, and the potential effects of feasible management scenarios. Synthesis and applications. Sensitivity analyses are useful tools to guide wildlife management. If implemented and interpreted with care, sensitivity analyses can identify key demographic parameters and threats to population viability. However, their usefulness is limited, when applied without careful evaluation as to whether the perturbations evaluated are realistic, feasible and meet the need of wildlife managers. We caution against the over-reliance on proportional sensitivity and elasticity analyses and point to alternative approaches, including life-stage simulation analysis, vital rate sensitivity analysis or manual perturbations
A stochastic model for estimating sustainable limits to wildlife mortality in a changing world
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3ā8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife
A stochastic model for estimating sustainable limits to wildlife mortality in a changing world
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3ā8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife
Sex-specific patterns in demography of bottlenose dolphins in coastal and estuarine waters
Inherent difficulties in determining the sex of free-ranging, sexually monomorphic species (where both sexes look the same) often prevents a sex-specific approach to their study. However, accounting for sex-differences in population parameters can have important conservation and management implications, as one sex may be more susceptible to threats than the other
Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits
Parasite infection of specific host genotypes relates to changes in prevalence in two natural populations of bumblebees
The antagonistic relationship between parasites and their hosts is strongly influenced by genotype-by-genotype interactions. Defense against parasitism is commonly studied in the context of immune system-based mechanisms and, thus, the focus in the search for candidate genes in host-parasite interactions is often on immune genes.In this study, we investigated the association between prevalence of parasite infection and host mitochondrial DNA (mtDNA) haplotypes in two natural populations of bumblebees (Bombus terrestris). The two most common haplotypes of the host populations, termed A and B, differ by a single nonsynonymous nucleotide substitution within the coding region of cytochrome oxidase I, an important player in metabolic pathways. We screened infection by Nosema bombi, a common endoparasite of bumblebees, and the corresponding host mtDNA-haplotype frequencies in over 1400 bumblebees between 2000 and 2010. The island population of Gotland showed lower mtDNA diversity compared to the mainland population in Switzerland. Over time, we observed large fluctuations in infection prevalence, as well as variation in host haplotype frequencies in both populations. Our long-term observation revealed that N. bombi infection of specific host genotypes is transient: We found that withincreasing infection prevalence, proportionally more individuals with haplotype B, but fewer individuals with haplotype A were infected. This suggests that the presence of N. bombi in specific host genotypes relates to infection prevalence. This may be a result of parasite competition, or differential resilience of host types to ward off infections. The findings highlight the important role of host mtDNA haplotypes in the interaction with parasites
Sex-specific patterns in abundance, temporary emigration and survival of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in coastal and estuarine waters
Inherent difficulties in determining the sex of free-ranging, sexually monomorphic species often prevents a sex-specific focus on estimating abundance, movement patterns and survival rates. This study provides insights into sex-specific population parameters of Indo-Pacific bottlenose dolphins (Tursiops aduncus). Systematic, boat-based photo-identification surveys (n = 417) were conducted year-round from 2007 to 2013 in coastal and estuarine waters off Bunbury, Western Australia. Pollock's Robust Design was used to quantify population parameters for three datasets: (i) adults and juveniles combined, (ii) adult females and, (iii) adult males. For all datasets, abundance estimates varied seasonally, with general highs during summer and/or autumn, and lows during winter. Dolphins had seasonally structured temporary emigration rates with similar trends between sexes. The derived return rate (1-Ī³') of temporary emigrants into the study area was highest from winter to spring, indicating that dolphins had a high probability of return into the study area during spring. We suggest that the return of dolphins into the study area and increase in abundance is influenced by the breeding season (summer/autumn). Prey availability is likely a main driver responsible for the movement of dolphins out of the study area during winter. Seasonal apparent survival rates were constant and high (0.98ā0.99) for all datasets. High apparent survival rates suggest there is no permanent emigration from the study area. Our sex-specific modeling approach offers a comprehensive interpretation of the population dynamics of a top predator in a coastal and estuarine environment and acts as a model for future sex-based population studies on sexually monomorphic species
Demography and genetics suggest reversal of dolphin sourceāsink dynamics, with implications for conservation
The forecast for the viability of populations depends upon metapopulation dynamics: the combination of reproduction and mortality within populations, as well as dispersal between populations. This study focuses on an IndoāPacific bottlenose dolphin (Tursiops aduncus) population in coastal waters near Bunbury, Western Australia. Demographic modeling of this population suggested that recent reproductive output was not sufficient to offset mortality. Migrants from adjacent populations might make up this deficit, so that Bunbury would act as a āsink,ā or net recipient population. We investigated historical dispersal in and out of Bunbury, using microsatellites and mitochondrial DNA of 193 dolphins across five study locations along the southwestern Australian coastline. Our results indicated limited gene flow between Bunbury and adjacent populations. The data also revealed a netādispersal from Bunbury to neighboring populations, with microsatellites showing that more than twice as many individuals per generation dispersed out of Bunbury than into Bunbury. Therefore, in historic times, Bunbury appears to have acted as a source population, supporting nearby populations. In combination with the prior finding that Bunbury is currently not producing surplus offspring to support adjacent populations, this potential reversal of sourceāsink dynamics may have serious conservation implications for Bunbury and other populations nearby
The relative importance of reproduction and survival for the conservation of two dolphin populations
It has been proposed that in slow-growing vertebrate populations survival generally has a greater influence on population growth than reproduction. Despite many studies cautioning against such generalizations for conservation, wildlife management for slow-growing populations still often focuses on perturbing survival without careful evaluation as to whether those changes are likely or feasible. Here, we evaluate the relative importance of reproduction and survival for the conservation of two bottlenose dolphin (Tursiops cf aduncus) populations: a large, apparently stable population and a smaller one that is forecast to decline. We also assessed the feasibility and effectiveness of wildlife management objectives aimed at boosting either reproduction or survival. Consistent with other analytically based elasticity studies, survival had the greatest effect on population trajectories when altering vital rates by equal proportions. However, the findings of our alternative analytical approaches are in stark contrast to commonly used proportional sensitivity analyses and suggest that reproduction is considerably more important.
We show that
1. in the stable population reproductive output is higher, and adult survival is lower;
2. the difference in viability between the two populations is due to the difference in reproduction;
3. reproductive rates are variable, whereas survival rates are relatively constant over time;
4. perturbations on the basis of observed, temporal variation indicate that population dynamics are much more influenced by reproduction than by adult survival;
5. for the apparently declining population, raising reproductive rates would be an effective and feasible tool to reverse the forecast population decline; increasing survival would be ineffective.
Our findings highlight the importance of reproduction ā even in slow-growing populations ā and the need to assess the effect of natural variation in vital rates on population viability. We echo others in cautioning against generalizations based on life-history traits and recommend that population modeling for conservation should also take into account the magnitude of vital rate changes that could be attained under alternative management scenarios