624 research outputs found
Franco-german cooperation within european scientific institutions
The development of the Franco-German scientific cooperation after the Second World War is considered through the prism of the activities of European research centers. Attention is paid to the influence of the international situation on the development of European scientific cooperation. The role of the Franco-German tandem in European scientific cooperation is analyzed
Heat Production Rate as an Indicator of the Ability of Plant Cell to Adapt to Environmental Conditions
The heat production rate in the suspension of unicellular alga (Chlorella vulgaris) was studied by the method of microcalorimetry during adaptation of the alga to stress conditions (NaCl and 45Β°C). The heat production rate slightly increased after the addition of 75 mM NaCl to cell suspension. A two-phase response was observed at 150 and 450 mM NaCl and at elevated temperature. The heat production rate was high during the first 3-4 h; then, it decreased and leveled off. This characteristic dramatically decreased at a high salt concentration (500 mM). Cell was unable to adapt to a high NaCl concentration (550 mM), which led to energy dissipation manifested in a high heat production rate. We conclude that the heat production rate, an integral indicator of plant cell activity can be used to assess plant cell adaptation to the impact of stress factors
WINTER HARDINESS OF BREAD WHEAT FROM THE VIR COLLECTION IN ENVIRONMENTS OF THE NORTHWESTERN AND CENTRAL BLACK SOIL REGIONS OF RUSSIA
Background. Winter wheat resistance to adverse winterΒing conditions is one of the most important adaptive characΒteristics. To obtain high yields, modern wheat cultivars should have various protective reactions. For their successΒful combination in one genotype, the availability of approΒpriate initial material is of great importance. In Russia, the accessions from the VIR collection are traditionally used as initial material for wheat breeding. The aims of the present study were (1) to evaluate winter hardiness in accessions from the VIR collection in a field test, and (2) to use the obΒtained data and those on the geographical origin of accesΒsions for making up the target sub-collection and performΒing its eco-geographical studies.Materials and methods. The initial sample for field screening contained 431 accesΒsions of common winter wheat from different regions of Russia and the former USSR, and 484 accessions from 18 foreign countries. Winter hardiness of these accessions was tested in the environmental conditions of the NorthΒwestern region (Pushkin, 59Β°41β²N 30Β°20β²E, 2006/2007, 2007/2008 and 2013/2014) and of the Central Black Soil reΒgion (Yekaterinino, 52Β°59β²N 40Β°50β²E, Tambov Province, 2007/2008 and 2008/2009). The degree of winter hardiΒness was determined in accordance with the technique deΒveloped at VIR.Results and conclusions. In 2006/2007, in Pushkin, a high and a very high degree of winter hardiness was displayed by 114 accessions with the origin from RusΒsia and the former USSR as well as by 12 accessions from foreign countries. Based on the obtained data and taking into account the diversity of the geographical origin of acΒcessions, the target sub-collection was formed, whose acΒcessions were subjected to eco-geographical two-year field studies (Pushkin, 59Β°41β²N 30Β°20β²E, 2007/2008, 2013/2014, and Yekaterinino, 52Β°59β²N 40Β°50β²N, Tambov Province, 2007/2008, 2008/2009). The Friedmanβs variance analysis has shown that variation on winter hardiness in 158 accesΒsions from the target sub-collection was determined by the environmental conditions of wheat cultivation (Ο2Ρ = 256.7; df = 4; Ο2W=0.05 = 9.5) and by genetic differences between acΒcessions (Ο2Ρ = 239.3; df = 157; Ο2W=0.05 = 187.2) at that effect of the prior was stronger than that of the latter. By using the cluster analysis (k-means algorithm), the target sub-collecΒtion structure has been revealed. Twelve accessions that overwintered well at both geographical locations during all the years of testing were identified
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²ΠΎΠ² Π½Π° ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΡ ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ² Π² ΡΠ΅Π»ΡΡ ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°
The objective of the research in the article is the food retail companies that occupy leading positions in the Russian and foreign markets. The subject of the study is financial and economic relations in the field of the use of intangible assets (IA) as a significant factor in increasing the capitalization of food retailers and their sustainable development. The relevance of the problem is due, on the one hand, to the significant contribution of trade to the countryβs GDP, on the other hand, to the need to find new drivers for the sustainable development of food retailers in the context of overcoming the negative consequences of the pandemic and the digital economy. The purpose of the study is to assess the impact of the value of intangible assets on the capitalization of food retailers. The authors applied the methods of comparative analysis, calculation of financial and economic indicators, correlation, and regression analysis of statistical data processing. The authors used Studentβs t-test and Fisherβs f-test to confirm the quality of the constructed model. The study shows that Russian food retailers, as compared to foreign ones, occupy a smaller market share in the domestic economy and have a smaller share of intangible assets in the non-current assets of companies (except for X5 Retail Group). On the Russian food market, a trend has been revealed towards an increase in the production of goods under private labels and a decrease in the presence of foreign retailers, as well as an increase in the share of online trading that requires the use of intellectual property, including digital intangible assets, and leads to an increase in cash flows. Based on multivariate correlation analysis, it was found that the capitalization of trading companies in the food sector is most affected by the value of intangible assets and return on them. The constructed model of linear two-factor regression allows the authors to conclude that with an increase in the value of intangible assets by 1%, the market capitalization of a company increases by 10% with a constant return on assets. The article provides recommendations for Russian food retailers on the formation and use of a portfolio of intangible assets for value-based business management, which will contribute to their sustainable development.ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΡΡΠΏΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΠΎΠΉ ΡΠΎΠ·Π½ΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠ³ΠΎΠ²Π»ΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°Π½ΠΈΠΌΠ°ΡΡ Π»ΠΈΠ΄ΠΈΡΡΡΡΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π½Π° ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΠΈ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΡ
ΡΡΠ½ΠΊΠ°Ρ
. ΠΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² (ΠΠΠ) ΠΊΠ°ΠΊ Π·Π½Π°ΡΠΈΠΌΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΡ
ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ² ΠΈ ΠΈΡ
ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π°, Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ Π²ΠΊΠ»Π°Π΄ΠΎΠΌ ΡΠΎΡΠ³ΠΎΠ²Π»ΠΈ Π² ΠΠΠ ΡΡΡΠ°Π½Ρ, Ρ Π΄ΡΡΠ³ΠΎΠΉ β Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΠΏΠΎΠΈΡΠΊΠ° Π½ΠΎΠ²ΡΡ
Π΄ΡΠ°ΠΉΠ²Π΅ΡΠΎΠ² ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΡ
ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ² Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π½ΠΈΡ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΡ
ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠΉ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΠΈ ΠΈ ΡΠΈΡΡΠΎΠ²ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΎΡΠ΅Π½ΠΊΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π½Π° ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΡ
ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ². ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΡΠ°ΡΡΠ΅ΡΠ° ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ, ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎ-ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
. ΠΠ»Ρ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° t-ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ° Π‘ΡΡΡΠ΄Π΅Π½ΡΠ° ΠΈ F-ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ Π€ΠΈΡΠ΅ΡΠ°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΠ΅ ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΡΠΌΠΈ Π·Π°Π½ΠΈΠΌΠ°ΡΡ ΠΌΠ΅Π½ΡΡΡΡ Π΄ΠΎΠ»Ρ ΡΡΠ½ΠΊΠ° Π² ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅ ΠΈ ΠΈΠΌΠ΅ΡΡ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΡΡ Π΄ΠΎΠ»Ρ ΠΠΠ Π² ΡΠΎΡΡΠ°Π²Π΅ Π²Π½Π΅ΠΎΠ±ΠΎΡΠΎΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ (Π·Π° ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π₯5 Retail Group). ΠΡΡΠ²Π»Π΅Π½Π° ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ Π½Π° ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΌ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΠΎΠΌ ΡΡΠ½ΠΊΠ΅ ΠΊ ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠΎΠ²Π°ΡΠΎΠ² ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΎΡΠ³ΠΎΠ²ΡΡ
ΠΌΠ°ΡΠΎΠΊ ΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΡ ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΡΡ
ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΈ ΡΠΎΡΠ³ΠΎΠ²Π»ΠΈ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΎΡΠΌΠ°ΡΠ΅, ΡΡΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΡΠΈΡΡΠΎΠ²ΡΡ
Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ², ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΡΡΡ Π΄Π΅Π½Π΅ΠΆΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ². ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π½Π° ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΠ³ΠΎΠ²ΡΡ
ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ ΠΏΡΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ° Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΡ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² ΠΈ ΠΈΡ
ΡΠ΅Π½ΡΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ. ΠΠΎΡΡΡΠΎΠ΅Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π΄Π²ΡΡ
ΡΠ°ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π½Π° 1% ΡΡΠ½ΠΎΡΠ½Π°Ρ ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° 10% ΠΏΡΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ΅Π½ΡΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΠΈ Π°ΠΊΡΠΈΠ²ΠΎΠ². ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ Π΄Π»Ρ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ²ΡΡ
ΡΠΈΡΠ΅ΠΉΠ»Π΅ΡΠΎΠ² ΠΏΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΡΡΠ΅Π»Ρ Π½Π΅ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π΄Π»Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π±ΠΈΠ·Π½Π΅ΡΠΎΠΌ, ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΈΡ
ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠΌΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ
ΠΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²ΠΎΠ²
The object of the study is the valuation and commercialization of digital intellectual assets. The subject of the study is a conceptual model for assessing the value of digital intellectual assets, reflecting the regulatory framework, objects, subjects, principles, approaches and methods of evaluation involved in civil turnover. The relevance of the study is related to the development of the digital economy and emerging new types of digital assets, including digital intellectual assets, which require their identification and the formation of a theoretical and methodological basis for valuation. The purpose of the study is to build a conceptual model for estimating the value of digital intellectual assets for subsequent commercialization with consideration of the identified identification characteristics, substantiated principles, factors, approaches and methodological tools. The methods of comparative analysis, generalization, classification, logical, semantic and functional modeling, cost estimation are used in the paper. The trends of digitalization of the economy are analyzed, the identification features of digital intellectual assets are determined based on the study of the concepts of βdigital assetβ, βintellectual assetβ, βobject of valuationβ. A semantic model of the valuation of digital intellectual assets is proposed, illustrating the relationship of its conceptual elements. A process-functional model for estimating the value of digital intellectual assets in IDEF0 notation is constructed. It is concluded that digital intellectual assets as objects of valuation in the conditions of the current regulatory regulation are: 1) the results of intellectual activity created with the use of digital technologies, for which digital rights are fixed in the information system in the form of NFT tokens; 2) digital rights to use intellectual property objects that exist in digital or other forms. Their cost can be determined by the method of analogues, the method of discounted cash flows or the cost of creation method, depending on the purpose of the assessment, the identified factors and taking into account the principles of evaluation.ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΡΡΠΏΠ°ΡΡ ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Π°ΠΊΡΠΈΠ²Ρ Π΄Π»Ρ ΡΠ΅Π»Π΅ΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΈ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ², ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ°Ρ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΡΡ Π±Π°Π·Ρ, ΠΎΠ±ΡΠ΅ΠΊΡΡ, ΡΡΠ±ΡΠ΅ΠΊΡΡ, ΠΏΡΠΈΠ½ΡΠΈΠΏΡ, ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π² ΡΠ΅Π»ΡΡ
Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² Π³ΡΠ°ΠΆΠ΄Π°Π½ΡΠΊΠΈΠΉ ΠΎΠ±ΠΎΡΠΎΡ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠΌΠΈ Π½ΠΎΠ²ΡΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ², ΡΡΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΡ
ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ Β ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π±Π°Π·ΠΈΡΠ° ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² Β ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Ρ Β ΡΡΠ΅ΡΠΎΠΌ Π²ΡΡΠ²Π»Π΅Π½Π½ΡΡ
ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ, ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ², ΡΠ°ΠΊΡΠΎΡΠΎΠ², ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°ΡΠΈΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ, ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΈ ΡΠΈΡΡΠΎΠ²ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ½ΡΡΠΈΠΉ Β«ΡΠΈΡΡΠΎΠ²ΠΎΠΉ Π°ΠΊΡΠΈΠ²Β», Β«ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΉ Π°ΠΊΡΠΈΠ²Β», Β«ΠΎΠ±ΡΠ΅ΠΊΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈΒ». ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ², ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΡΡΠ°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ Π΅Π΅ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². ΠΠΎΡΡΡΠΎΠ΅Π½Π° ΠΏΡΠΎΡΠ΅ΡΡΠ½ΠΎ-ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΠΊΡΠΈΠ²ΠΎΠ² Π² Π½ΠΎΡΠ°ΡΠΈΠΈ IDEF0. Π‘Π΄Π΅Π»Π°Π½ Π²ΡΠ²ΠΎΠ΄ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Π°ΠΊΡΠΈΠ²Ρ ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΠΏΡΠ°Π²ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ: 1) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΡΠΎΠ·Π΄Π°Π½Π½ΡΠ΅ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΡΠΎΠ²ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ, Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΏΡΠ°Π²Π° Π² ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ Π² ΡΠΎΡΠΌΠ΅ NFT-ΡΠΎΠΊΠ΅Π½ΠΎΠ²; 2) ΡΠΈΡΡΠΎΠ²ΡΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ
Π² ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅. ΠΡ
ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ², ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΠΊΠΎΠ½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π΅Π½Π΅ΠΆΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ² ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅Π»ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ, Π²ΡΡΠ²Π»Π΅Π½Π½ΡΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ
ΠΠΠ’ΠΠΠΠΠΠΠΠ― ΠΠ¦ΠΠΠΠ ΠΠΠ’ΠΠΠΠΠΠ’Π£ΠΠΠ¬ΠΠΠΠ ΠΠΠ’ΠΠΠ¦ΠΠΠΠ Π ΠΠΠΠΠΠ Π Π£Π‘ΠΠΠΠΠ―Π₯ ΠΠΠΠΠΠΠ¦ΠΠΠΠΠΠΠ Π ΠΠΠΠΠ’ΠΠ―
The article discusses the innovative development of a region (based on available and newly created innovations) assuming a high quality intellectual potential. The intellectual potential of the region is understood as a set of two interrelated componentsΒ β the resource potential that determines conditions and possibilities of the innovative activity and the achieved capacity representing the results of this activity. The structure of the regionβs intellectual potential is shown. The principal elements of the methodology for its evaluation including the research basis, the semantic domain model, principles, objectives, functions, types, methods of assessment are described. Particular attention is paid to the development of non-financial evaluation methods based on statistical quality, use of a system of indicators, dynamics indices and ratings taking into account the entropy of partial indicators. The industrybased and statistical approaches to the assessment of the intellectual potential of the region are described.Β Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ΅Π³ΠΈΠΎΠ½Π° (Π½Π°Β Π±Π°Π·Π΅ Π³ΠΎΡΠΎΠ²ΡΡ
ΠΈΒ ΡΠΎΠ·Π΄Π°Π½Π½ΡΡ
ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΉ), ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°. ΠΠΎΠ΄ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠΌ ΡΠ΅Π³ΠΈΠΎΠ½Π° ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΡΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π΄Π²ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
Β β ΡΠ΅ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΈΒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, ΠΈΒ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠ±ΠΎΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΡΡΠΊΡΡΡΠ° ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΠ΅Π³ΠΈΠΎΠ½Π°. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ»Π΅ΠΌΠ΅Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΅Π³ΠΎ ΠΎΡΠ΅Π½ΠΊΠΈ: Π½Π°ΡΡΠ½ΡΠΉ Π±Π°Π·ΠΈΡ, ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ, ΠΏΡΠΈΠ½ΡΠΈΠΏΡ, ΡΠ΅Π»ΠΈ, ΡΡΠ½ΠΊΡΠΈΠΈ, Π²ΠΈΠ΄Ρ, ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π΅ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠΎΠ², ΠΈΠ½Π΄Π΅ΠΊΡΠΎΠ² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΈΒ ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠ², ΡΡΠΈΡΡΠ²Π°ΡΡΠΈΡ
ΡΠ½ΡΡΠΎΠΏΠΈΡ ΡΠ°ΡΡΠ½ΡΡ
ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠΎΠ². ΠΠΏΠΈΡΠ°Π½Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΎ-ΠΎΡΡΠ°ΡΠ»Π΅Π²ΠΎΠΉ ΠΈΒ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ ΠΊΒ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΠ΅Π³ΠΈΠΎΠ½Π°.
- β¦