13 research outputs found

    miR-27b inhibits fibroblast activation via targeting TGFB signaling pathway

    Get PDF
    Background: MicroRNAs are a group of small RNAs that regulate gene expression at the posttranscriptional level. They regulate almost every aspect of cellular processes. In this study, we investigated whether miR-27b regulates pulmonary fibroblast activation.Results: We found that miR-27b was down-regulated in fibrotic lungs and fibroblasts from an experimental mouse model of pulmonary fibrosis. The overexpression of miR-27b with a lentiviral vector inhibited TGFB1-stimulated mRNA expression of collagens (COL1A1, COL3A1, and COL4A1) and alpha-smooth muscle actin, and protein expression of Col3A1 and alpha-smooth muscle actin in LL29 human pulmonary fibroblasts. miR-27b also reduced contractile activity of LL29. TGFB receptor 1 and SMAD2 were identified as the targets of miR-27b by 3'-untranslated region luciferase reporter and western blotting assays.Conclusions: Our results suggest that miR-27b is an anti-fibrotic microRNA that inhibits fibroblast activation by targeting TGFB receptor 1 and SMAD2. This discovery may provide new targets for therapeutic interventions of idiopathic pulmonary fibrosis.Peer reviewedPhysiological SciencesOklahoma Center for Respiratory and Infectious Disease

    Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug

    No full text
    Malignant mesothelioma is a form of cancer that is highly resistant to conventional cancer therapy for which no major therapeutic advances have been introduced. Here, we identify gremlin-1, a known bone morphogenetic protein inhibitor crucial for embryonic development, as a potential therapeutic target for mesothelioma. We found high expression levels of gremlin-1 in the mesothelioma tumor tissue, as well as in primary mesothelioma cells cultured from pleural effusion samples. Downregulation of gremlin-1 expression by siRNA-mediated silencing in a mesothelioma cell line inhibited cell proliferation. This was associated with downregulation of the transcription factor slug as well as mesenchymal proteins linked to cancer epithelial-to-mesenchymal transition. Further, resistance to paclitaxel-induced cell death was associated with high gremlin-1 and slug expression. Treatment of gremlin-1-silenced mesothelioma cells with paclitaxel or pemetrexed resulted in efficient loss of cell survival. Finally, our data suggest that concomitant upregulation of fibrillin-2 in mesothelioma provides a mechanism for extracellular localization of gremlin-1 to the tumor microenvironment. This was supported by the demonstration of interactions between gremlin-1, and fibrillin-1 and -2 peptides as well as by colocalization of gremlin-1 to fibrillin microfibrils in cells and tumor tissue samples. Our data suggest that gremlin-1 is also a potential target for overcoming drug resistance in mesothelioma
    corecore