63 research outputs found
Fredholm Modules on P.C.F. Self-Similar Fractals and their Conformal Geometry
The aim of the present work is to show how, using the differential calculus
associated to Dirichlet forms, it is possible to construct Fredholm modules on
post critically finite fractals by regular harmonic structures. The modules are
d-summable, the summability exponent d coinciding with the spectral dimension
of the generalized laplacian operator associated with the regular harmonic
structures. The characteristic tools of the noncommutative infinitesimal
calculus allow to define a d-energy functional which is shown to be a
self-similar conformal invariant.Comment: 16 page
Transition density of diffusion on Sierpinski gasket and extension of Flory's formula
Some problems related to the transition density u(t,x) of the diffusion on
the Sierpinski gasket are considerd, based on recent rigorous results and
detailed numerical calculations. The main contents are an extension of Flory's
formula for the end-to-end distance exponent of self-avoiding walks on the
fractal spaces, and an evidence of the oscillatory behavior of u(t,x) on the
Sierpinski gasket.Comment: 11 pages, REVTEX, 2 postscript figure
From non-symmetric particle systems to non-linear PDEs on fractals
We present new results and challenges in obtaining hydrodynamic limits for
non-symmetric (weakly asymmetric) particle systems (exclusion processes on
pre-fractal graphs) converging to a non-linear heat equation. We discuss a
joint density-current law of large numbers and a corresponding large deviations
principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016
conference "Stochastic Partial Differential Equations & Related Fields" in
honor of Michael R\"ockner's 60th birthday, Bielefel
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
Laplace Operators on Fractals and Related Functional Equations
We give an overview over the application of functional equations, namely the
classical Poincar\'e and renewal equations, to the study of the spectrum of
Laplace operators on self-similar fractals. We compare the techniques used to
those used in the euclidean situation. Furthermore, we use the obtained
information on the spectral zeta function to define the Casimir energy of
fractals. We give numerical values for this energy for the Sierpi\'nski gasket
Potential theory results for a class of PDOs admitting a global fundamental solution
We outline several results of Potential Theory for a class of linear par-tial differential operators L of the second order in divergence form. Under essentially the sole assumption of hypoellipticity, we present a non-invariant homogeneous Harnack inequality for L; under different geometrical assumptions on L (mainly, under global doubling/Poincar\ue9 assumptions), it is described how to obtainan invariant, non-homogeneous Harnack inequality. When L is equipped with a global fundamental solution \u393, further Potential Theory results are available (such as the Strong Maximum Principle). We present some assumptions on L ensuring that such a \u393 exists
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte
- …